Document Type : علمی - پژوهشی

Authors

1 Assistant Prof., School of Engineering, Dep. of Surveying, Tafresh University, Tafresh City

2 M.Sc. Student, School of Engineering, Dep. of Surveying, Tafresh University, Tafresh City

Abstract

In this study, the fusion of hyperspectral and LiDAR data was used to propose a new method to detectbuildings using the machine learning algorithm. The data sets provided by the National ScienceFoundation (NSF) - funded by Centre for Airborne Laser Mapping (NCALM)- over the University ofHouston campus and the neighboring urban area, were used. The objectives of this study were: 1)automatic buildings extracting using the hyperspectral and LiDAR fused data (automation), 2)detecting of the maximum number of listed buildings on the study area (completeness), and 3)achieving the high accuracy in building detection throughout the classification procedure (accuracyand precision). After classification of the buildings, a comparison was made between the resultsobtained by the proposed method and the reference method in this field. Our proposed methodshowed a better accuracy for buildings detection in a much shorter time compared to the referencemethod. The accuracy of the classification was assessed by four parameters of Precision,Completeness, Overall Accuracy and Kappa Coefficient, and the values of 96%, 100%, 99% and 0.94were obtained, respectively.

Keywords

  1. اسدی، م.، ورشوساز، م.، صادقیان، س.، 1386، بررسی روش‌های استخراج ساختمان در مناطق شهری با استفاده از داده‌های لیدار، سازمان نقشه‌برداری کشور، همایش ژئوماتیک 86، صص. 89-79.
  2. پهلوانی، پ.، امینی امیرکلائی، ح.، صادقیان، س.، 1394، استخراج مدل رقومی زمین از داده‌های لیدار و تصاویر هوایی و شناسایی ساختمان‌ها و معابر درون‌شهری توسط شبکة عصبی پیش‌خورانده، مجلة علمی‌ـ پژوهشی رایانش نرم و فناوری اطلاعات، جلد چهارم، شمارة 2، صص 97-81.
  3. رضایی، ی.، ولدان زوج، م.، وزیری، ف.، 1388، بررسی یخچال طبیعی خراسان زردکوه بختیاری بوسیلة تصاویر ماهواره‌ای، علوم زمین، سال هجدهم، شمارة 71، صص. 172-167.
  4. صادقیان، س.، آئینه، ا.، 1394، استخراج عارضة پوشش گیاهی در مناطق شهری به‌کمک ادغام داده‌های لیدار و ابرطیفی هوایی، بیست‌و‌دومین همایش ملی ژئوماتیک، اردیبهشت 1394، صص. 8-1.
  5. متکان، ع.ا.، محمدزاده، ع.، صادقیان، س.، حاجب، م.، 1388، ارائة روشی مبتنی‌بر ماشین‌های بردار پشتیبان و مورفولوژی ریاضی به‌منظور آشکارسازی راه‌های شهری از داده‌های لیزر اسکنر هوایی، سنجش از دور و GIS ایران، سال اول، شمارة 3، صص. 97-81.
  6. هژبری، ب.، صمدزادگان، ف.، عارفی، ح.، 1393، بازسازی مدل ساختمان برمبنای تلفیق ابرنقطة لیدار و تصویر هوایی، نشریة علمی‌ـ پژوهشی علوم‌وفنون نقشه‌برداری، دورة سوم، شمارة 4، صص. 121-103.
  7. Azizi, Z. & Sadeghian, S., 2013, Forest Canopy Modeling with LIDAR Data and Digital Aerial Imagery, 2nd International conference on Sensors and Models in Photogrammetry and Remote Sensing (SMPR’13), Oct. 5–8, Tehran, Iran.
  8. Awrangjeb, M., and Fraser, C.S., 2014, Automatic Segmentation of Raw LiDAR Data for Extraction of Building Roofs, Remote Sensing, Vol. 6, No. 1, pp. 3715–3751.
  9. Benediktsson, J.A., Palmason, J.A. & Sveinsson, J.R., 2005, Classification of Hyperspectral Data from Urban Area Based on Extended Morphological Profiles, IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 3, PP. 480–491.
  10. Bigdeli, B., Samadzadegan, F. & Reinartz, P., 2014, A Decision Fusion Method Based on Multiple Support Vector Machine System for Fusion of Hyperspectral and LiDAR Data, International Journal of Image and Data
  11. Fusion, Vol. 5, No. 3, PP. 196–209.
  12. Debes, C., Merentitis, A., Heremans, R., Hahn, J., Frangiadakis, N., Kasteren, T.V., Liao, W., Bellens, R., Pizurica, A., Gautama, S., Philips, W., Prasad, S., Du, Q. & Pacifici, F., 2014, Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, No. 6, PP. 2405–2418.
  13. Duda, R.O., Hart, P.E. & Stork, D.G., 2009, Pattern Classification, 3rd Edition, Wiley Publication, New York, USA.
  14. Fauvel, M., Benediktsson, J.A., Chanussot, J. & Sveinsson, J.R., 2008, Spectral and Spatial Classification of Hyperspectral Data using SVMs and Morphological Profile, IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No.11, PP. 3804–3814.
  15. Gonzalez, R.C. & Woods, R.E., 2008, Digital Image Processing, 3rd Edition, Prentice Hall Inc., Upper Saddle River, New Jersey.
  16. Heck, L.P. & Chou, K.C., 1994, Gaussian Mixture Model Classifiers for Machine Monitoring, In Proceeding of ICASSP, PP. 133–136.
  17. Matkan A.A., Hajeb, M. & Sadeghian, S., 2014. Road Extraction from Lidar Data Using Support Vector Machine Classification, Phogrammetric Engineering and Remote Sensing (PE&RS) Journal, vol. 80, No. 5, May, PP. 409–422
  18. Matkan, A.A., Hajeb, M., Eslami, M., Pourali, H. & Sadeghian, S., 2012, Gap Filling in Road Extraction Using Radon Transformation, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 1, No. 4, PP. 47–52.
  19. Quinlan, J.R., 1993, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
  20. Quinlan, J.R., 1996, Improved Use of Continuous Attributes in C4.5, Journal of Artificial Intelligence Research, Vol. 4, No.1, PP. 77–90.
  21. Wei, W., Zhang, Y. & Tian, C., 2015, Latent Subclass Learning-Based Unsupervised Ensemble Feature Extraction Method for Hyperspectral Image Classification, Remote Sensing Letters, Vol. 6, No. 4, PP. 257–266.
  22. Yamazaki, F., Hara, K. & Liu, W., 2014, Urban Land-Cover Classification Based on Airborne Hyperspectral Data and Field Observation, Image and Signal Processing for Remote Sensing XX, Edited by Lorenzo Bruzzone, Proceedings of SPIE, Vol. 92, No. 44, PP. 1–7.