تحلیل زمانی‌ـ مکانی تصادفات عابران پیاده با استفاده از سری زمانی و شاخص Moran’s I تفاضلی (مطالعۀ موردی: شهر مشهد)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکدۀ مهندسی علوم زمین، دانشگاه صنعتی اراک، اراک، ایران

چکیده

سابقه و هدف: عابران پیاده، به‌دلیل نبودِ تدابیر حفاظتی، آسیب‌پذیرترین کاربران راه شناخته می‌شوند و ایمنی آنها در حوزۀ برنامه‌ریزی حمل‌ونقل بسیار حیاتی است. مطالعات متعددی که تصادفات عابران پیاده را تحلیل کرده‌اند معمولاً بر مدل‌های پیش‌بینی، عوامل خطر و الگوهای مکانی‌ـ زمانی متمرکز بوده‌اند. این تحلیل‌ها بر اهمیت شناسایی مناطق پرخطر و اجرای اقدامات پیشگیرانه تأکید می‌کنند. تأثیرات خودهمبستگی مکانی و زمانی در درک الگوهای تصادفات بسیار مهم است و شاخص‌هایی مانند Moran’s I و تخمین تراکم کرنل، در این حوزه، کاربرد گسترده‌ای دارند. با توجه به موارد یادشده، مطالعۀ پیش رو تأثیر رشد سریع اجتماعی‌ـ اقتصادی در تصادفات ترافیکی و نیاز به مداخلات ایمنی هدفمند برای حفاظت از عابران پیاده را، در شهر مشهد در ایران، به‌صورت برجسته و مؤثر نشان می‌دهد.
مواد و روش‌ها: در این پژوهش، با استفاده از تحلیل اکتشافی سری زمانی، تصادفات عابران پیاده به‌صورت ماهیانه و ساعتی در بازه‌ای پنج‌ساله (1394-1398) بررسی شده است. در گام بعد، وجود خودهمبستگی زمانی و همچنین روند در وقوع تصادفات عابران پیاده مورد بحث قرار گرفته و سپس، با استفاده از تحلیل یکنواختی سری زمانی، زمان تغییر در وقوع تصادفات بررسی شده است. درنَهایت، به‌منظور استخراج الگوهای مکانی تغییرات تصادفات عابران پیاده در بازۀ زمانی مطالعاتی، از شاخص Moran’s I تفاضلی استفاده شده است.
نتایج و بحث: با استفاده از تحلیل‌های سری زمانی، الگوی زمانی و وجود خودهمبستگی زمانی معنادار در مقادیر ماهیانه و ساعتی تصادفات عابران پیاده تأیید شد. نتایج آزمون من‌ـ کندال با لحاظ‌کردن تأثیرات خودهمبستگی نیز وجود روند معنادار در تصادفات عابران پیاده را به‌ازای ماه‌های گوناگون سال و ساعات متفاوت شبانه‌روز تأیید کرد. همچنین، ازطریق تحلیل یکنواختی سری زمانی با استفاده از آزمون بیشاند، زمان وقوع تغییرات ناگهانی تصادفات در ساعت‌های متفاوت شبانه‌روز (7:00-8:00 صبح) و همچنین ماه‌های گوناگون سال (تیر و شهریور) شناسایی شد. نتایج استفاده از شاخص Moran’s I تفاضلی نیز همبستگی مکانی معنادار در تغییرات تصادفات عابران پیاده، بین دو بازۀ زمانی آغاز (سال 1394) و پایان زمان تحلیل (سال 1398) را نشان داد و نواحی دارای تمرکز تغییرات معنادار شناسایی شد.
نتیجه‌گیری: در این پژوهش، عابران پیاده به‌منزلۀ یکی از آسیب‌پذیرترین کاربران راه مورد توجه قرار گرفته‌اند و تغییرات وقوع تصادفات مرتبط با آنها در بازۀ زمانی پنج‌ساله‌ای (1394-1398)، با استفاده از تحلیل‌های سری زمانی و همچنین تحلیل زمانی‌ـ مکانی Moran’s I تفاضلی، در کلان‌شهر مشهد ارزیابی شده است. خودهمبستگی زمانی معنادار در مقیاس ماهیانه و ساعتی نیز در وقوع تصادفات به تأیید رسید و وقوع تصادفات عابران پیاده، در ماه‌های متفاوت سال و همچنین ساعات متفاوت شبانه‌روز، نیز روند مشخصی را نشان داد و درنَهایت، زمان وقوع تغییرات ماهیانه و ساعتی شناسایی شد. نتایج بیانگر خودهمبستگی زمانی‌ـ مکانی معنادار در تغییر تصادفات، در حد فاصل برش زمانی ابتدا (سال 1394) و انتهای زمان تحلیل (1398)، به‌ازای ماه‌های متفات بود. درعین‌حال همبستگی زمانی‌ـ مکانی معناداری، به‌ازای ساعات متفاوت، وجود ندارد و ازاین‌رو کوچک کردن مقیاس زمانی به از دست رفتن همبستگی‌های مکانی نیز منجر می‌شود. نتایج این پژوهش می‌تواند، در قالب گام نخست شناسایی و تحلیل الگوهای زمانی‌ـ مکانی، تغییرات تصادفات عابران پیاده را شناسایی و کمک کند متخصصان حوزۀ ایمنی و تصمیم‌گیرندگان، با بازرسی‌های محلی، نواحی استخراج‌شده را ارزیابی نمایند.

کلیدواژه‌ها


عنوان مقاله [English]

Spatio-Temporal Analyses of Pedestrian Accidents Using Time Series and Differential Moran’s I, Case Study: Mashhad

نویسندگان [English]

  • Matin Shahri
  • Mohammad Amin Ghannadi
Dep. of Geoscience Engineering, Arak University of Technology, Arak, Iran
چکیده [English]

Introdction: Pedestrians are considered the most vulnerable road users due to their lack of protective measures, making their safety crucial in transportation planning. Numerous studies have analyzed pedestrian accidents, focusing on predictive models, risk factors, and spatial-temporal patterns. These analyses highlight the importance of identifying high-risk areas and implementing preventive measures. Spatial and temporal autocorrelation effects are significant in understanding accident patterns, and methods like Moran’s I index and Kernel Density Estimation are commonly used. The study of Mashhad, Iran, emphasizes the impact of rapid socio-economic growth on traffic accidents and the need for targeted safety interventions to protect pedestrians.
Materials & Mrthods: In this study, a time series exploratory analysis was used to examine pedestrian accidents on a monthly and hourly basis over a five-year period (2015-2019). Next, the presence of temporal autocorrelation and trends in pedestrian accidents were discussed. Then, using time series homogeneity analysis, the change points in the occurrence of accidents were examined. Finally, to extract spatial patterns of changes in pedestrian accidents during the study period, the differential Moran’s I index was applied.
Results & Discussions: Using time series analysis, the temporal pattern and significant temporal autocorrelation in the monthly and hourly values of pedestrian accidents were confirmed. The results of the Mann-Kendall test, considering the effects of autocorrelation, also confirmed the presence of a significant trend in pedestrian accidents for different months of the year and different hours of the day. Additionally, through the homogeneity analysis of the time series using the Buishand test, the timing of sudden changes in accidents at different hours of the day (7:00-8:00 AM) and different months of the year (July and September) was identified. The results of using the differential Moran’s I index also showed significant spatial correlation in the changes in pedestrian accidents between the initial time period (2015) and the end of the analysis period (2019), identifying areas with significant changes.
Conclusion: In this study, pedestrians, as one of the most vulnerable road users, were considered, and the changes in the occurrence of related accidents over a five-year period (2015-2019) were evaluated using time series analysis and differential Moran’s I spatio-temporal analysis in the metropolis of Mashhad. Significant temporal autocorrelation in monthly and hourly scales was also confirmed in the occurrence of accidents, showing a specific trend in pedestrian accidents in different months of the year and different hours of the day. Finally, the timing of monthly and hourly changes was identified. The results showed significant spatio-temporal autocorrelation in the changes in accidents between the initial (2015) and final (2019) time slices for different months. However, there was no significant spatio-temporal correlation for different hours, indicating that reducing the temporal scale leads to the loss of spatial correlations. The results of this study can serve as a first step in identifying and analyzing spatio-temporal patterns, identifying changes in pedestrian accidents, and allowing safety experts and decision-makers to evaluate the identified areas through local inspections.

کلیدواژه‌ها [English]

  • Spatio-temporal analyses
  • Time series
  • homogeneity analyses
  • Differential Moran’s I
  • Pedestrian accidents
Afshari, A., Ayati, E. & Barakchi, M., 2021, Evaluating the Effects of External Factors on Pedestrian Violations at Signalized Intersections (A Case Study of Mashhad, Iran), IATSS Research, 45(2), PP. 234-240, https://doi.org/https://doi.org/10.1016/j.iatssr.2020.10.004.
Ahmed, K., Shahid, S., Ismail, T., Nawaz, N. & Wang, X., 2018, Absolute Homogeneity Assessment of Precipitation Time Series in an Arid Region of Pakistan, Atmósfera, 31, PP. 301-316, https://doi.org/10.20937/ATM. 2018.31.03.06.
Aidoo, E.N., Amoh-Gyimah, R. & Ackaah, W., 2013, The Effect of Road and Environmental Characteristics on Pedestrian Hit-and-Run Accidents in Ghana, Accident Analysis & Prevention, 53, PP. 23-27, https://doi.org/ 10.1016/j.aap.2012.12.021.
Al-Madani, H. & Al-Janahi, A., 2006, Personal Exposure Risk Factors in Pedestrian Accidents in Bahrain, Safety Science, 44(4), PP. 335-347, https://doi.org/10.1016/j.ssci. 2005.10.009.
 
Alexandersson, H., 1986, A Homogeneity Test Applied to Precipitation Data, Journal of Climatology, 6(6), PP. 661-675, https://doi.org/10.1002/joc.3370060607.
Anselin, L., 1995, Local Indicators of Spatial Association—LISA, Geographical Analysis, 27(2), PP. 93-115, https://doi.org/https:// doi.org/10.1111/j.1538-4632.1995.tb00338.x.
Anselin, L., 2019, Local Spatial Autocorrelation, GeoDa: An Introduction to Spatial Data Analysis, https://doi.org/10.1111/j.0016-7363. 2005.00671.x.
Apardian, R.E. & Monwar Alam, B., 2020, Pedestrian Fatal Crash Location Analysis in Ohio Using Exploratory Spatial Data Analysis Techniques, Transportation Research Record, 2674(11), PP. 888-900, https://doi.org/10.1177/0361198120950717.
Bajada, T. & Attard, M., 2021, A Typological and Spatial Analysis of Pedestrian Fatalities and Injuries in Malta, Research in Transportation Economics, 86, P. 101023, https://doi.org/10.1016/j.retrec.2020.101023.
Blazquez, C.A. & Celis, M.S., 2013, A Spatial and Temporal Analysis of Child Pedestrian Crashes in Santiago, Chile, Accident Analysis & Prevention, 50, PP. 304-311, https://doi.org/10.1016/j.aap.2012.05.001.
Bone, C., Wulder, M.A., White, J.C., Robertson, C. & Nelson, T.A., 2013, A GIS-Based Risk Rating of Forest Insect Outbreaks Using Aerial Overview Surveys and the Local Moran's I statistic, Applied Geography, 40, PP. 161-170, https://doi.org/10.1016/ j.apgeog.2013.02.011.
Buishand, T.A., 1982, Some Methods for Testing the Homogeneity of Rainfall Records, Journal of Hydrology, 58(1-2), PP. 11-27, https://doi.org/10.1016/0022-1694(82) 90066-X.
Bunnarong, S. & Upala, P., 2018, Spatial Analysis to Identify Pedestrian Crash Zones: A Case Study of School Zones in Thailand, The Open Transportation Journal, 12(1), DOI: 10.2174/1874447801812010167.
Ćosić, M., Šimunović, L. & Jakovljević, M., 2019, Relationships between External Factors and Pedestrian Accident Blacksp ots–A Case Study of the City of Zagreb, Promet-Traffic&Transportation, 31(3), PP. 329-340, https://doi.org/10.7307/ptt.v31i3.3119.
Elzeiny, R., Khadr, M., Zahran, S. & Rashwan, E., 2019, Homogeneity Analysis of Rainfall Series in the Upper Blue Nile River Basin, Ethiopia, Journal of Engineering Research, 3(September), PP. 46-53, DOI:10.21608/ erjeng.2019.125704.
Fernandes, C.M. & Boing, A.C., 2019, Pedestrian Mortality in Road Traffic Accidents in Brazil: Time Trend Analysis, 1996-2015, Epidemiologia e Serviços de Saúde, 28, https://doi.org/10.5123/S1679-49742019000100021.
Fox, L., Serre, M.L., Lippmann, S.J., Rodríguez, D.A., Bangdiwala, S.I., Gutiérrez, M.I., Escobar, G. & Villaveces, A., 2015, Spatiotemporal Approaches to Analyzing Pedestrian Fatalities: The Case of Cali, Colombia, Traffic Injury Prevention, 16(6), PP. 571-577, https://doi.org/10.1080/ 15389588.2014.976336.
Greibe, P., 2003, Accident Prediction Models for Urban Roads, Accident Analysis & Prevention, 35(2), PP. 273-285, https://doi.org/ 10.1016/S0001-4575(02)00005-2.
Grekousis, G. & Gialis, S., 2019, More Flexible Yet Less Developed? Spatio-Temporal Analysis of Labor Flexibilization and Gross Domestic Product in Crisis-Hit European Union Regions, Social Indicators Research, 143(2), PP. 505-524. https://doi.org/10.1007/s11205-018-1994-0.
Gunawan, A., Mendez, C. & Santos-Marquez, F., 2019, Regional Income Disparities, Distributional Convergence, and Spatial Effects: Evidence from Indonesia, Munich Personal RePEc Archive, DOI: 10.1007/ s10708-021-10377-7.
Hamed, K.H. & Rao, A.R., 1998, A Modified Mann-Kendall Trend Test for Autocorrelated Data, Journal of Hydrology, 204(1-4), PP. 182-196, https://doi.org/ 10.1016/S0022-1694(97)00125-X.
Hasani, J., Erfanpoor, S., Rajabi, A., Barzegar, A., Khodadoost, M., Afkar, M. & Hashemi Nazari, S.S., 2019, Spatial Analysis of Mortality Rate of Pedestrian Accidents in Iran during 2012–2013, Traffic Injury Prevention, 20(6), PP. 636-640, DOI: 10.1080/15389588.2019.1628223.
Hassanpour, M., Mohammadzadeh, A., Mohsenian, S.H., 2016, Investigating the Impact of Urban Planning Parameters on Pedestrian Accidents (Case Study: Mashhad City), 17th International Conference on Transportation and Traffic Engineering, Tehran, Iran.
Hassanpour, M., Shad, R., Mohammadzadeh, A., Shiran, GH. & Mohsenian, S.H., 2017, Identifying Pedestrian Accident Hotspots Using Kernel Density Function in GIS Environment (Case Study: Mashhad City), Road Journal, 25(90), PP. 19-30.
Hoxha, G., Shala, A. & Likaj, R., 2017, Pedestrian Crash Model for Vehicle Speed Calculation at Road Accident, International Journal of Civil Engineering and Technology, 8(9), PP. 1093-1099, DOI: https://doi.org/ 10.1515/scjme-2017-0017.
Huang, J., Peng, Y., Yang, J., Otte, D. & Wang, B., 2018, A Study on Correlation of Pedestrian Head Injuries with Physical Parameters Using in-Depth Traffic Accident Data and Mathematical Models, Accident Analysis & Prevention, 119, PP. 91-103, https://doi.org/10.1016/j.aap.2018.07.012.
Ibeneme, S., Ukor, N., Droti, B., Karamagi, H., Okeibunor, J. & Zawaira, F., 2022, Geospatial Clustering of Mobile Phone Use and Tuberculosis Health Outcomes Among African Health Systems [Original Research], Frontiers in Public Health, 9, https://doi.org/10.3389/fpubh.2021.653337.
Jamali-Dolatabad, M., Sadeghi-Bazargani, H. & Mousavi, S., 2022, Applying Count Time Series to Assess 13-Year Pedestrian Mortality Trend Caused by Traffic Accidents in East-Azerbaijan Province, Iran, International Journal of Injury Control and Safety Promotion, 29(2), PP. 239-246, DOI: 10.1080/17457300.2021.1998134.
Kahya, E., Arıkan, B.B. & Akdeniz, E., 2016, Homogeneity Analysis of Precipitation Series in Turkey, 12th International Congress on Advances in Civil Engineering–ACE, 10.13140/rg.2.2.36695.27044.
Kang, Y., Cho, N. & Son, S., 2018, Spatiotemporal Characteristics of Elderly Population’s Traffic Accidents in Seoul Using Space-Time Cube and Space-Time Kernel Density Estimation, PLoS One, 13(5), P. e0196845, https://doi.org/10.1371/ journal.pone.0196845.
Kaygisiz, Ö., Yildiz, A. & Duzgun, S., 2015, Spatio-Temporal Pedestrian Accident Analysis to Improve Urban Pedestrian Safety: The Case of the Eskisehir Motorway, Gazi University Journal of Science, 28(4), PP. 623-630.
Kendall, M.G., 1965, Course in Multivariate Analysis, Hafner Publishing Company.
Madsen, H., 2007, Time Series Analysis, CRC Press, https://doi.org/10.1201/9781420059687.
Mandal, B.K. & Yadav, B.N., 2014, Pattern and Distribution of Pedestrian Injuries in Fatal Road Traffic Accidental Cases in Dharan, Nepal, Journal of Natural Science, Biology, and Medicine, 5(2), P. 320, DOI: 10.4103/0976-9668.136175.
Mann, H.B., 1945, Nonparametric Tests against Trend, Econometrica: Journal of the Econometric Society, 13(3), PP. 245-259, https://doi.org/10.2307/1907187.
Marcolini, G., Bellin, A. & Chiogna, G., 2017, Performance of the Standard Normal Homogeneity Test for the Homogenization of Mean Seasonal Snow Depth Time Series: Performance of Snht for Snow Depth Time Series, International Journal of Climatology, 37, https://doi.org/10.1002/joc.4977.
Martin, A., 2006, Factors Influencing Pedestrian Safety: A Literature Review, TRL Wokingham, Berks.
Mead, J., Zegeer, C. & Bushell, M., 2014, Evaluation of Pedestrian-Related Roadway Measures: A Summary of Available Research, P a BI Center. Chapel Hill, NC, UNC Highway safety Research Center, 115, DOI: 10.4236/chnstd.2017.61003.
Mirzaei, B., Shad, R. & Mohammadzadeh, A., 2021, Evaluation of the Spatial Distribution of Elderly Pedestrian Accidents Using a GIS Environment (Case Study: Mashhad City), Journal of Traffic Engineering, 89, PP. 15-25.
Munira, S., Sener, I.N. & Dai, B., 2020, A Bayesian Spatial Poisson-Lognormal Model to Examine Pedestrian Crash Severity at Signalized Intersections, Accident Analysis & Prevention, 144, P. 105679, https://doi.org/ 10.1016/j.aap.2020.105679.
Murat, O., Sayin, C.G. & Yuruk, Y., 2017, Analysis of the Pedestrian Accidents in Turkey, International Journal of Engineering and Geosciences, 2(3), PP. 100-109, https://doi.org/10.26833/ijeg.323826.
Nabavi Niaki, M.S., Fu, T., Saunier, N., Miranda-Moreno, L.F., Amador, L. & Bruneau, J.-F., 2016, Road Lighting Effects on Bicycle and Pedestrian Accident Frequency: Case Study in Montreal, Quebec, Canada, Transportation Research Record, 2555(1), PP. 86-94, https://doi.org/10.3141/2555-12.
Oikawa, S., Matsui, Y., Doi, T. & Sakurai, T., 2016, Relation between Vehicle Travel Velocity and Pedestrian Injury Risk in Different Age Groups for the Design of a Pedestrian Detection System, Safety Science, 82, PP. 361-367, https://doi.org/ 10.1016/j.ssci.2015.10.003.
Palma, W., 2016, Time Series Analysis. John Wiley & Sons, DOI: 10.1007/s00362-016-0858-4.
Parvareh, M., Karimi, A., Rezaei, S., Woldemichael, A., Nili, S., Nouri, B. & Nasab, N.E., 2018, Assessment and Prediction of Road Accident Injuries Trend Using Time-Series Models in Kurdistan, Burns & Trauma, 6, DOI: 10.1186/s41038-018-0111-6.
Pettitt, A.N., 1979, A NonParametric Approach to the ChangePoint Problem, Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(2), PP. 126-135, https://doi.org/10.2307/2346729.
Prato, C.G., Gitelman, V. & Bekhor, S., 2012, Mapping Patterns of Pedestrian Fatal Accidents in Israel, Accident Analysis & Prevention, 44(1), PP. 56-62, https://doi.org/ 10.1016/j.aap.2010.12.022.
Qasim, S.M., Youns, A.M. & Mahmood-Agha, O.M., 2020, Testing of the Homogeneity of Precipitation Time Series in Selected Regions of Iraq, Al-Rafidain Engineering Journal (AREJ), 25(1), PP. 126-137, DOI: 10.33899/rengj.2020.127033.1035.
Rabbani, M., Musarat, M.A., Alaloul, W., Maqsoom, A., Bukhari, H. & Rafiq, W., 2021, Road Traffic Accident Data Analysis and Its Visualization, Civil Engineering and Architecture, 9, PP. 1603-1614, https:// doi.org/10.13189/cea.2021.090530.
Rankavat, S. & Tiwari, G., 2013, Pedestrian Accident Analysis in Delhi Using GIS, Journal of the Eastern Asia Society for Transportation Studies, 10, PP. 1446-1457, DOI:10.11175/EASTS.10.1446.
Roess, R.P., Prassas, E.S. & McShane, W.R., 2010, Traffic Engineering (4th ed.), Prentice Hall.
Santhosh, A., Sam, E. & Bindhu, B., 2020, Pedestrian Accident Prediction Modelling—A Case Study in Thiruvananthapuram City, Transportation Research: Proceedings of CTRG 2017, DOI:10.1007/ 978-981-32-9042-6_50.
Schneider, R.J., Ryznar, R.M. & Khattak, A.J., 2004, An Accident Waiting to Happen: A Spatial Approach to Proactive Pedestrian Planning, Accident Analysis & Prevention, 36(2), PP. 193-211, https://doi.org/10.1016/ S0001-4575(02)00149-5.
Sen, P.K., 1968, Estimates of the Regression Coefficient Based on Kendall's Tau, Journal of the American Statistical Association, 63(324), PP. 1379-1389, https://doi.org/ 10.2307/2285891.
Sewalkar, P. & Seitz, J., 2019, Vehicle-to-Pedestrian Communication for Vulnerable Road Users: Survey, Design Considerations, and Challenges, Sensors, 19(2), P. 358, https://doi.org/10.3390/s19020358.
Shabanikiya, H., Hashtarkhani, S., Bergquist, R., Bagheri, N., VafaeiNejad, R., Amiri-Gholanlou, M., Akbari, T. & Kiani, B., 2020, Multiple-Scale Spatial Analysis of Paediatric, Pedestrian Road Traffic Injuries in a Major City in North-Eastern Iran 2015–2019, BMC Public Health, 20(1), PP. 1-11, DOI: 10.1186/s12889-020-08911-2.
Shariat Mohaymany, A. & Shahri, M., 2020, Evaluating the Impact of New Congestion Charging Scheme Using Smartphone-Based Data: A Spatial Change Detection Study, Canadian Journal of Civil Engineering, 47(9), PP. 1105-1115, https://doi.org/10.1139/cjce-2019-0106.
Shbeeb, L., 2023, Clustering and Pedestrian Crashes Prediction Modelling: Amman Case, International Journal of Injury Control and Safety Promotion, 30(4), PP. 501-529, DOI: 10.1080/17457300.2023.2214900.
Sheykhfard, A., Haghighi, F., Nordfjærn, T. & Soltaninejad, M., 2020, Structural Equation Modelling of Potential Risk Factors for Pedestrian Accidents in Rural and Urban Roads, International Journal of Injury Control and Safety Promotion, 28(1), PP. 46-57, https://doi.org/10.1080/17457300.2020.1835991.
Sheykhfard, A., Haghighi, F., Papadimitriou, E. & Van Gelder, P., 2021, Analysis of the Occurrence and Severity of Vehicle-Pedestrian Conflicts in Marked and Unmarked Crosswalks through Naturalistic Driving Study, Transportation Research Part F: Traffic Psychology and Behaviour, 76, PP. 178-192, https://doi.org/https://doi.org/10.1016/ j.trf.2020.11.008.
Shiran, GH., Hassanpour, M., Shad, R. & Mohammadzadeh, A., 2017, Network-Based Modeling of Pedestrian Injury Accidents Using Neural Networks in a GIS Environment (Case Study: Mashhad City), Journal of Transportation, 10(2), PP. 245-266, DOI: 20.1001.1.20086598.1397.10.2.4.9.
Siddiqui, C., Abdel-Aty, M. & Choi, K., 2012, Macroscopic Spatial Analysis of Pedestrian and Bicycle Crashes, Accident Analysis & Prevention, 45, PP. 382-391, https://doi.org/10.1016/j.aap.2011.08.003.
Soltani, A. & Askari, S., 2014, Analysis of Intra-Urban Traffic Accidents Using Spatiotemporal Visualization Techniques, Transport and Telecommunication, 15(3), P. 227, DOI 10.2478/ttj-2014-0020.
Stipancic, J., Miranda-Moreno, L., Strauss, J. & Labbe, A., 2020, Pedestrian Safety at Signalized Intersections: Modelling Spatial Effects of Exposure, Geometry and Signalization on a Large Urban Network, Accident Analysis & Prevention, 134, P. 105265. https://doi.org/10.1016/j.aap.2019. 105265.
Theofilatos, A. & Efthymiou, D., 2012, Investigation of Pedestrians’ Accident Patterns in Greater Athens Area, Procedia-Social and Behavioral Sciences, 48, PP. 1897-1906, https://doi.org/10.1016/j.sbspro. 2012.06.1164.
Tímea, K., Kovács-Székely, I. & Anda, A., 2020, Homogeneity Tests and Non-Parametric Analyses of Tendencies in Precipitation Time Series in Keszthely, Western Hungary, Theoretical and Applied Climatology, 139, https://doi.org/10.1007/ s00704-019-03014-4.
Truong, L.T. & Somenahalli, S.V., 2011, Using GIS to Identify Pedestrian-Vehicle Crash Hot Spots and Unsafe Bus Stops, Journal of Public Transportation, 14(1), PP. 99-114, https://doi.org/10.5038/2375-0901.14.1.6.
Von Neumann, J., 1941, Distribution of the Ratio of the Mean Square Successive Difference to the Variance, The Annals of Mathematical Statistics, 12(4), PP. 367-395, DOI: 10.1214/aoms/1177731677.
WHO, 2013, Pedestrian Safety: A Road Safety Manual for Decision-Makers and Practitioners.
Wilt, G., Lewis, B. & Adams, E., 2019, A Spatial Exploration of Changes in Drug Overdose Mortality in the United States, 2000–2016, Preventing Chronic Disease, 16, https://doi.org/10.5888/pcd16.180405.
Xu, X., Xie, S., Wong, S.C., Xu, P., Huang, H. & Pei, X., 2016, Severity of Pedestrian Injuries due to Traffic Crashes at Signalized Intersections in Hong Kong: A Bayesian Spatial Logit Model, Journal of Advanced Transportation, 50(8), PP. 2015-2028, https://doi.org/10.1002/atr.1442.
Yigit Katanalp, B., Eren, E. & Alver, Y., 2023, An Integrated Solution to Identify Pedestrian-Vehicle Accident Prone Locations: GIS-Based Multicriteria Decision Approach, Journal of Transportation Safety & Security, 15(2), PP. 137-176, https://doi.org/10.1080/19439962.2022.2048760.
Yue, S. & Wang, C., 2004, The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series, Water Resources Management, 18(3), PP. 201-218, DOI: 10.1023/B:WARM.0000043140.61082.60.
Zhang, S., Abdel-Aty, M., Yuan, J. & Li, P., 2020, Prediction of Pedestrian Crossing Intentions at Intersections Based on Long Short-Term Memory Recurrent Neural Network, Transportation Research Record, 2674(4), PP. 57-65, https://doi.org/10.1177/ 0361198120912422.