ارزیابی زمانی‌ـ مکانی بارش ماهیانه مبتنی‌بر داده‌های CHIRPS، TRMM و MERRA در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکدۀ علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

سابقه و هدف: بارش، به‌منزلۀ یکی از اصلی‏ترین مؤلفه‌های بیلان آب، نقش مهمی در توزیع مکانی و زمانی آب در دسترس دارد و مهم‌ترین عاملی است که در چرخۀ هیدرولوژی، دخالت مستقیم دارد. به‌دلیل فقدان داده‏های بارش به‌روز و طولانی‌مدت با صحت مناسب و تغییر‌پذیری زیاد این کمّیت در مکان و زمان، پایش آن در وسعت‏های زیاد، بسیار دشوار است. همچنین هزینه‏بر بودن ایجاد ایستگاه اندازه‏گیری بارش، کمبود ایستگاه، مستقر نبودن دستگاه‏های ثبت‏کننده در مناطق صعب‏العبور، برداشت‏های نقطه‏ای و تعمیم‌پذیر نبودن اندازه‏گیری‏ها در نواحی وسیع و نیز نبودِ توانایی مطلوب در ثبت بارندگی‏های رگباری و سنگین همرفتی، همواره پژوهشگران حوزه‏های جوّی و هیدرولوژی را در اندازه‏گیری بارش، با چالش مواجه کرده است؛ ازاین‏رو استفاده از محصولات ماهواره‏ای جایگزین مناسبی برای دستیابی به داده‏های بارش، به‌ویژه در مناطق فاقد آمار و مناطق با تراکم ایستگاه‌های زمینی پایین است. اما محصولات ماهواره‏ای نیز خطاهای متعددی دارند؛ به همین دلیل، ارزیابی و بررسی دقت این محصولات قبل‌از استفاده، ضروری است. بنابراین، در تحقیق حاضر، محصولات بارش سه ماهوارۀ CHIRPS، MERRA و TRMM در مقیاس ماهیانه، در سطح کشور ایران، ارزیابی شده است.
مواد و روش‌ها: در این مطالعه، داده‏های 222 ایستگاه سینوپتیک کشور ایران، از ژانویۀ 2005 تا دسامبر 2019، در مقیاس زمانی ماهیانه از سازمان هواشناسی کل کشور دریافت شد. محصولات بارش ماهواره‏هایCHIRPS ، TRMM و MERRA نیز از سایت ناسا دانلود و پس‌از همسان‌سازی فرمت داده‏ها، به داده‏های عددی هم‏واحد تبدیل شدند. دراِدامه، داده‏های ماهواره‏ای و داده‏های ایستگاه‌های سینوپتیک زمینی به‌صورت یکپارچه درکنار هم قرار گرفتند و درنَهایت، داده‏های تخمینی و مشاهده‏ای اعتبارسنجی شدند تا میزان خطای پیش‌بینی ماهواره‏ها، با استفاده از شاخص‏های آماری شامل Bias، MAE، RMSE، R و R^2 به دست آید و موفقیت سنجنده‏ها، با استفاده از شاخص‏های مطابقت شامل POD، FAR و CSI، صحت‏سنجی و بررسی شود.
نتایج و بحث: با توجه به نتایج، TRMM با 84/23 = RMSE و 69/0 = R^2، درمقایسه با ماهواره‏های دیگر، عملکرد خوبی داشته است. سایر شاخص‏ها نیز حاکی از برتری این ماهواره بر دیگر ماهواره‏هاست. ماهوارۀ MERRA، با 57/30 = RMSE و 56/0 =R^2، درمقایسه با TRMM عملکردی ضعیف و درقیاس با CHIRPS عملکردی بهتر داشته است و از این لحاظ، در رتبۀ دوم قرار دارد. ماهوارۀ CHRIPS نیز تقریباً در همۀ شاخص‏ها عملکردی ضعیف‌تر از دو ماهوارۀ دیگر نشان داده است. با توجه به این اطلاعات و مقدار Bias حاصل‌شده، هر سه ماهواره بارندگی را کمتر از مقدار واقعی برآورد کرده‏اند اما ماهوارۀ TRMM، درمقایسه با دو ماهوارۀ دیگر، کم‏برآوردتر بوده و در این شاخص نیز، برتر از دو ماهوارۀ دیگر عمل کرده است.
نتیجه‌گیری: صحت‌سنجی تک‌تک ایستگاه‌ها نشان داد که داده‏های هر سه ماهواره، طبق شاخص POD، دامنۀ تغییرات اندک و نزدیک به صفر دارند و طبق شاخص‏های FAR و CSI، این اختلاف حدود 5/0 است؛ بیشترین آن به محصولات ماهوارۀ MERRA، با دامنۀ تغییرات 148/0، تعلق دارد که نشان می‏دهد طبق این شاخص‏ها، می‌توان به داده‏های این ماهواره‏ها تاحد بسیاری اعتماد داشت. نتایج FAR و CSI بیان می‌کند که هرچند محصولات MERRA در تمامی ایستگاه‌ها، با اختلاف بسیار جزئی، کمترین میزان خطا و اشتباه را در تشخیص روزهای غیربارانی و بارانی داشته‌اند، براساس نتایج این تحقیق می‏توان گفت که درمجموع، محصولات ماهوارۀ TRMM دارای صحت مناسب، تشخیص و مطابقت مطلوب در تمامی ارزیابی‌هاست.
 

کلیدواژه‌ها


عنوان مقاله [English]

Temporal-Spatial Assessment of Monthly Precipitation Based on CHIRPS, TRMM and MERRA Data in Iran

نویسندگان [English]

  • Zahra Barkhordari
  • Ali Shamsoddini
Dep. of Remote Sensing and GIS, Humanities Faculty, Tarbiat Modarres University, Tehran, Iran
چکیده [English]

Introduction: Precipitation, as one of the main components of the water balance, plays an important role in the spatial and temporal distribution of available water and is the most important factor that directly interferes with the hydrological cycle. Due to the lack of up-to-date and long-term precipitation data with appropriate accuracy and the high spatially and temporally variability of this quantity, it is very difficult to monitor it over large areas; also, the cost of establishing a precipitation measuring station, the shortage of stations, the lack of installation of recording devices in undulating areas, point-based measurements and the inability to generalize measurements over large areas, as well as the lack of the desired ability to record torrential and heavy convective rainfall, have always faced researchers in the fields of atmospheric and hydrology with challenges in measuring precipitation; therefore, the use of satellite products is a suitable alternative to obtain precipitation data, especially in areas without statistics and areas with a low density of ground stations. However, satellite products also have numerous errors; For this reason, it is essential to evaluate and verify the accuracy of these products before use. Therefore, in the present study, the precipitation products of the three satellites including CHIRPS, MERRA, and TRMM were evaluated on a monthly scale in the country of Iran.
Materials and Methods: In this study, data from 222 synoptic stations in Iran were received from the National Meteorological Organization on a monthly time scale from January 2005 to December 2019, and precipitation products from CHIRPS, TRMM, and MERRA satellites were downloaded from the NASA website and converted into uniform numerical data after data format was standardized; then, satellite data and data from ground-based synoptic stations were integrated together, and finally, the estimated and observed data were validated to obtain the satellite forecast error rate using statistical indices including Bias, MAE, RMSE, R, and R2, and the accuracy and success rate of the sensors were verified using conformity indices including POD, FAR, and CSI.
Results and Discussion: According to the results, TRMM has shown good performance compared to other satellites with RMSE = 23.84 and R2 = 0.69. Other indicators also indicate the superiority of this satellite compared to other satellites. MERRA satellite with RMSE = 30.57 and R2 = 0.56 has shown poor performance compared to TRMM and stronger performance compared to CHIRPS and is in second place in this respect. CHRIPS satellite also shows poorer performance compared to the other two satellites in almost all indicators. According to this table and the resulting Bias value, all three satellites have underestimated the rainfall compared to the actual value; however, TRMM satellite has less underestimation compared to the other two satellites and has performed better than the other two satellites in this indicator.
Conclusion: The accuracy of each station showed that the data of all three satellites, according to the POD index, have a low and close to zero variation range, and according to the FAR and CSI indices, this difference is around 0.5; so that the largest of them is related to the MERRA satellite products with a variation range of 0.148, which shows that according to these indices, the data of these satellites have a high reliability. Based on the FAR and CSI results, it can be seen that, although, in all stations, the MERRA products had the lowest error and mistake rate in detecting non-rainy days and rainy days with a very slight difference, but, based on the results of this study, it can be said that overall, the TRMM satellite products have appropriate accuracy, detection, and desirable consistency in all assessments.

کلیدواژه‌ها [English]

  • Precipitation estimation
  • Validation
  • Satellite precipitation products
  • CHIRPS
Abad, B., Salahi, B., Raispour, K. & Moradi, M., 2021, Satellite Based Communication between Land Surface Temperature and Biophysical Variables in the Jazmourian Catchment, Iranian Journal of Geophysics, 15(2), P. 7, https://doi.org/10.30499/ijg.2021. 272063.1315.
Akbari Yangehghaleh, M., Sanayinejad, S., Faridhosseini, A. & Akbari, M., 2017, The Study of Spatial-Temporal Distribution of Rainfall, Using TRMM Data (Case Study: Khorasan Razavi Province), Journal of Climate Research, 8(29-30), PP. 1-18, https://sid.ir/paper/213083/en.
Alibakhshi, S.M., Farid Hossini, A., Davari, K., Alizadeh, A. & Munyka, H., 2019, Assessment of Ground Station, GPM Satellite and MERRA Precipitation Products in Kashafrud Basin, J. Watershed Manage. Res., 9(18), PP. 111-122, DOI:10.29252/jwmr. 9.18.111.
Alizadeh, A., Kamali, G., Mousavi, F. & Mousavi Bayeghi, M., 2007, Weather and Climatology, Ferdowsi University of Mashhad Publications, P. 392.
Al-Sheriadeh, M. & Al-Sharman, A.R., 2024, Evaluation of Satellite Rainfall Estimates Using PERSIANN-CDR and TRMM over Three Critical Cells in Jordan, Journal of Hydroinformatics, 26(2), PP. 424-440, https://doi.org/10.2166/hydro.2024.154.
Azizian, A. & Amini, S., 2020, The Effect of Climate and Topographic Conditions on the Performance of PERSIANN Family Products over Iran, Iran-Water Resources Research, 16(1), PP. 86-101.
Baranizadeh, A., Behyar, M. & Abedini, Y., 2011, Evaluation of TRMM-3B43 Satellite Precipitation Estimates Using Comparison with Ground-Based Observational Data from High-Resolution Precipitation Networks (APHRODITE) in Iran, The Second National Conference on Applied Research on Iranian Water Resources,Zanjan University.
Barbosa Lopes Cavalcante, R., Batista da Silva Ferreira, D., Rógenes Monteiro Pontes, P., Gonçalves Tedeschi, R., Priscila Wanzeler da Costa, C. & Barreiros de Souza, E., 2020, Evaluation of Extreme Rainfall Indices from CHIRPS Precipitation Estimates over the Brazilian Amazonia, Atmospheric Research, 238, P. 104879, https://doi.org/ 10.1016/j.atmosres.2020.104879.
Bayable, G., Amare, G., Alemo, G. & Gashaw, T., 2021, Spatiotemporal Variability and Trends of Rainfall and Its Association with Pacific Ocean Sea Surface Temperature in West Harerge Zone, Eastern Ethiopia, Environment System Research, 10, PP. 1-21, https://doi.org/10.1186/s40068-020-00216-y.
Bihamta, A., Goharnejad, H. & Moazami, S., 2018 , Study of Precipitation Data of GPM and TRMM Satellites in Daily, Monthly and Seasonal Scales at Tehran, Iranian Remote Sensing & GIS, 10(2), PP. 45-66.
Chen, F. & Gao, Y., 2018, Evaluation of Precipitation Trends from High-Resolution Satellite Precipitation Products over Mainland China, Climate Dynamics, 51, PP. 3311-3331, https://doi.org/10.1007/ s00382-018-4080-z.
Duan, Z., Liu, J., Tuo, Y., Chiogna, G. & Disse, M., 2016, Evaluation of Eight High Spatial Resolution Gridded Precipitation Products in Adige Basin (Italy) at Multiple Temporal and Spatial Scales, Science of the Total Environment, 573, PP. 1536-1553, https://doi.org/10.1016/j.scitotenv.2016.08.213.
Erfanian, M., Kazempour, S. & Heidari, H., 2016, Calibration of TRMM Satellite 3B42 and 3B43 Rainfall Data in Climatic Zones of Iran, Physical Geography Research, 48(2), PP. 287-303, https://doi.org/10.22059/jphgr. 2016.59370.
Fattahi, A., Araghizadeh, M., Mobarak Hassan, A., Khansalari, S. & Hossein Hamzeh, N., 2022, Study of the Mechanism and Source of Dust in Khorasan Razavi Province by RegCM4 and HYSPLIT Model: A Case Study (July 1, 2014), Journal of Climate Research, 13(49), PP. 27-44.
Franklin Trejo, J., Paredes, F., Barbosa, H.A., Lakshmi Kumar & T.V., 2017, Validating CHIRPS-Based Satellite Precipitation Estimates in Northeast Brazil, Journal of Arid Environments, 139, PP. 26-40, DOI:10.1016/j.jaridenv.2016.12.009.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Rowland, J., Romero, B., Husak, G., Michaelsen, J. & Verdin, P., 2014, A Quasi-Global Precipitation Time Series for Drought Monitoring, U.S. Geological Survey, 832, Technical Report, https://doi.org/ 10.3133/ds832.
Ghaedamini, H.A., Morid, S., Nazemosadat, M., Shamsoddini, A. & Shafizadeh Moghadam, H., 2021, Validation of the CHIRPS and CPC‑Unified Products for Estimating Extreme Daily Precipitation over Southwestern Iran, Theoretical and Applied Climatology, 146, PP. 1207-1225, https://doi.org/10.1007/s00704-021-03790-y.
Gorjizade, A., AkhondAli, A, Shahbazi, A. & Moridi, A., 2019, Comparison and Evaluation of Precipitation Estimated by ERA-Interim, PERSIANN-CDR and CHIRPS Models at the Upstream of Maroon Dam, Iran-Water Resources Research, 15(1), PP. 267-279, https://dorl.net/ dor/20.1001.1.17352347.1398.15.1.20.7.
Hamal, K., Sharna, S., Khadka, N., Baniya, B., Ali, M., Shretha, S., Xu, T., Shretha, D. & Dawadi, B., 2020, Evaluation of Merra -2 Precipitation Products Using Gauge Observation in Nepal, Hydrology, 7(40), DOI:10.3390/hydrology7030040, https://doi.org/10.3390/hydrology7030040.
Huffman, G., Bolvin, D., Braithwaite, D., Hsu, K. & Joyce, R., 2015, Algorithm Theoretical Basis Document (ATBD) Version 4,5: For the NASA Global Precipitation Measurment (GPM) Integrated Multi- Satellite E Reterivals for GPM(IMERG), Algorithm Theoretical Basis Document (ATBD) Version, 4(26), P. 30.
Katsanos, D., Retalis, A., Tymvios, F. & Michaelides, S., 2016a, Analysis of Precipitation Extremes Based on Satellite (CHIRPS) and in Situ Dataset over Cyprus, Nat. Hazards, 83, PP. S53-S63, DOI:10.1007/s11069-016-2335-8.
Katsanos, D., Retalis, A. & Michaelides, S., 2016b, Validation of a High-Resolution Precipitation Database (CHIRPS) over Cyprus for a 30-Year Period, Atmospheric Research, 169, PP. 459-464, DOI:10.1016/ j.atmosres.2015.05.015.
Keikhosravi‐Kiany, M.S., Masoodian, S.A., Balling Jr., R.C. & Darand, M., 2022, Evaluation of Tropical Rainfall Measuring Mission, Integrated Multi‐Satellite Retrievals for GPM, Climate Hazards Centre InfraRed Precipitation with Station Data, and European Centre for Medium‐Range Weather Forecasts Reanalysis v5 Data in Estimating Precipitation and Capturing Meteorological Droughts over Iran, International Journal of Climatology, 42, PP. 2039-2064, https://doi.org/10.1002/joc.7351.
Kummerow, C., Barnes, W., Kozu, T., Shiue, J. & Simpson, J., 1988, The Tropical Rainfall Measuring Mission (TRMM) Sensor Package, Journal of Atmospheric and Oceanic Technology, 15, PP. 809-817, DOI:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.
Logah, F., Adjei, K., Obouobie, E., Gyamfi, C. & Odai, S., 2021, Evaluation and Comparison of Satellite Rainfall Products in the Black Volta Basin, Environmental Processes, 8, PP. 119-137, DOI:10.1007/ s40710-020-00465-0.
Mahmoudi Babolan, S., Nastarani Amoghin, S. & Rasoulzadeh, A., 2022, Evaluation of Satellite Precipitation Products for Estimating Heavy Precipitation in the Caspian Coast, Water and Soil Management and Modeling, 2(4), PP. 107-122, DOI: 10.22098/MMWS.2022.11147.1102.
Mekonnen, K., Manohar, N., Leh, M., Akpoti, K., Owusu, A., Tinonetsana, P., Hamouda, T., Ghansah, B., Prabhath, T. & Munzimi, Y., 2023, Accuracy of Satellite and Reanalysis Rainfall Estimates over Africa: A Multi-Scale Assessment of Eight Products for Continental Applications, Journal of Hydrology: Regional Studies, 49, P. 101514, https://doi.org/10.1016/j.ejrh.2023.101514.
Miri, M., Azizi, G., Khosh Akhlagh, F. & Rahimi, M., 2017, Evaluation Statistically of Temperature and Precipitation Datasets with Observed Data in Iran, Jwmseir, 10(35), PP. 39-50, https://dor.isc.ac/dor/ 20.1001.1.20089554.1395.10.35.8.1.
Miri, M., Rahimi, M. & Noroozi, A., 2019, Evaluation and Comparison of GPM and TRMM Daily Precipitation with Observed Precipitation across Iran, Journal of Watershed Engineering and Management, 11(4), PP. 972-983, https://doi.org/10.22092/ ijwmse.2018.121397.1469.
Mobarakhassan, E., Ranjbar Saadatabadi, A. & Fatahi, E., 2020, Dust Investigation by MERRA-2 Model in Iran: (during 2007- 2017), Iranian Journal of Soil and Water Research, 51(9), PP. 2203-2219, https://doi.org/ 10.22059/ijswr.2020.298505.668518.
Mokhtari, S., Sharafati, A. & Raziei, T., 2021, Validation of CHIRPS Satellite‑Based Precipitation Data against the in Situ Observations Using the Copula Method: A Case Study of Kosar Dam Basin, Iran, Acta Geophysica, 1-20, https://doi.org/ 10.1007/s11600-021-00682-7.
Nezafat, A., Moridi, A., Gorjizade, A. & Yousefi, H., 2021, Evaluating the Performance of Precipitation Products Taking into Account the Climatic and Topographic Conditions across Iran, Iran-Water Resources Research , 17(2), PP. 62-81.
Nozarpour, N., Mahjoobi, E. & Golian, S., 2022, Performance Evaluation of TRMM-3B43-V7 and PERSIANN-CDR Monthly Precipitation Products in Different Climatic Regions of Iran, Iran-Water Resources Research, 18(1), PP. 227-202.
Paridad, P. & Farid Hosseini, A., 2016, Extraction of Precipitation Values by Merging TRMM(TMI) and MSG-SEVIRI TIR Data, The First National Conference on Remote Sensing and Geographic Information Systems in Geoscience, Shiraz University.
Rahmati, A. & Massah Bavani, A., 2019, Comparative Evaluation of Global Rainfall Datasets with Observation Rainfall Values (Case Study: Karoun Basin), Iran-Water Resources Research, 15(1), PP. 178-192.
Raispour, K. & khosravi, Y., 2021, Long-Term Monitoring of the Concentration of Carbon Black Pollutants in Iran Using NASA/MERRA-2 Base Model Data, Environmental Sciences, 19(3), PP. 99-122, https://doi.org/10.52547/envs.2021.33941.
Rasouli, A., Erfanian, M., Sari Sarraf, B. & Javan, K., 2016, Comparative Evaluation of TRMM Estimated Precipitation Values and Recorded Precipitation from Ground Stations in the Urmia Lake Basin, Journal of Geographic Space, 54(16), PP. 195-217.
Rasoulzadeh, A., Mahmoudi Babolan, S. & Nastarani Amoghin, S., 2022, Spatio-Temporal Evaluation of Satellite Precipitation Products in Northwestern Iran, Iranian Journal of Soil and Water Research, 53(9), PP. 1241-1260, https://doi.org/ 10.22059/ijswr.2022.345392.669311.
Reda, K., Liu, X., Tang, Q. & Gebremicael, T., 2021, Evaluation of Global Gridded Precipitation and Temperature Datasets against Gauged Observations over the Upper Tekeze River Basin, Ethiopia, Journal of Meteorological Research, 35, PP. 673-689, https://doi.org/10.1007/s13351-021-0199-7.
Rivera, J., Marianetti, G. & Hinrich, S., 2018, Validation of CHIRPS Precipitation Dataset along the Central Andes of Argentina, Atmospheric Research, 213, PP. 437-449, DOI:10.1016/j.atmosres.2018.06.023.
Sadeghi, H., Masoompour, J. & Miri, M., 2019, The Evaluation of GPM Precipitation Remote Sensing Data with Observed Data (Case Study: Mid-West of Iran), Iranian Remote Sensing and GIS, 11(2), PP. 115-123, https://doi.org/10.52547/gisj.11.2.115.
Shen, Z., Yong, B.J., Gourley, J., Qi, W., Lu, D., Liu, J., Ren, L., Hong, Y., & Zhang, J., 2020, Recent Global Performance of the Climate Hazards Group Infrared Precipitation (CHIRP) with Stations (CHIRPS), Journal of Hydrology, 591, P. 125284, https://doi.org/ 10.1016/j.jhydrol.2020.125284.
Shirvani, A. & Fakhri Zade Shirazi, E., 2015, Comparison of Ground Based Observation of Precipitation with TRMM Satellite Estimations in Fars Province, Journal of Agricultural Meteorology, 2(2), PP. 1-15, https://sid.ir/paper/249959/en.
Taghizadeh, E. & Ahmadi-Givi, F., 2018, Evaluation of GPM Precipitation Products and Mapping Soil Moisture Using SMAP Data in the Northwest of Iran, Iranian Geophysical Society, 12(3), PP. 70-86, https://dorl.net/dor/20.1001.1.20080336.1397.12.3.5.8.
Tan, M.L., 2019, Assessment of TRMM Product for Precipitation Extreme Measurement over the Muda River Basin, Malaysia, HydroResearch (2), PP. 69-75, https://doi.org/10.1016/j.hydres.2019.11.004.
Zhang, Y., Wu, C., Yeh, P., Li, J., Hu, B., Feng, G. & Jun, C., 2022, Evaluation and Comparison of Precipitation Estimates and Hydrologic Utility of CHIRPS, TRMM 3B42 V7 and PERSIANN-CDR Products in Various Climate Regimes, Atmospheric Research, 265, P. 105881, https://doi.org/ 10.1016/j.atmosres.2021.105881.