ارزیابی عملکرد الگوریتم تحلیل طیفی منفرد در بازسازی داده‌های ازدست‌رفته با شدت‌های متفاوت در سری زمانی ساعتی دمای سطح زمین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

2 گروه جغرافیا، بخش برنامه‌ریزی محیطی، دانشگاه یزد، یزد، ایران.

3 گروه احیا مناطق خشک و کوهستانی، دانشکده منابع طبیعی دانشگاه تهران، کرج، ایران.

4 گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.

چکیده

مقدمه و هدف: تولید داده‌های دمای سطح زمین (LST) با پیوستگی زمانی و مکانی، برای مطالعات هیدرولوژی، هواشناسی، اکولوژی، زیست‌محیطی و دیگر موارد، تقاضای چشمگیری دارد. تقریباً 60 تا 75% کرۀ زمین در هر لحظه با ابرها پوشیده می‌شود؛ بنابراین ابرها، با ایجاد مانعی، باعث جذب بخشی از انرژی حرارتی بازتاب‌یافته از زمین می‌شوند و با تأثیر در انرژی فروسرخ حرارتی، سبب ایجاد داده‌های از دست‌رفته و نامعتبر در سری‌های زمانی LST می‌شوند. رفع اثر پوشش ابر همواره مسئله‌ای رایج درزَمینۀ استفاده از تصاویر ماهواره‌ای است. هدف از پژوهش حاضر ارزیابی عملکرد الگوریتم تحلیل طیفی منفرد چندکاناله (M-SSA)، به‌منظور بازسازی داده‌های ازدست‌رفته و دورافتاده با استفاده از پوشش ابر در سری‌ زمانی LST ساعتی ماهوارۀ Meteosat-9 است.
مواد و روش‌ها: منطقۀ مطالعاتی، در پژوهش حاضر، کشور ایران در نظر گرفته شد و نیز از سری زمانی LST ساعتی سنجندۀ SEVIRI از ماهوارۀ زمین‌ثابت Meteosat-9 در سال 2022 استفاده شد. در ابتدا، با استفاده از نرم‌افزار SSA و آزمون مونت کارلو، اندازۀ پنجره و تعداد مؤلفه‌های معنی‌دار یک سری زمانی LST ساعتی تعیین شد. سپس با استفاده از مؤلفه‌های معنی‌دار شناسایی‌شده و نیز الگوریتم M-SSA، سری‌های زمانی LST بازسازی شد. خطای بازسازی در شرایط آسمان صاف، با داده‌های موجود سری زمانی و خطای بازسازی در شرایط آسمان ابری، ازطریق ایجاد داده‌های ازدست‌رفتۀ مصنوعی (ابر مصنوعی) با شدت‌های 10، 20، 30، ...، 90% در سری زمانی، با استفاده از آماره‌های خطای جذر میانگین مربعات (RMSE) و ضریب تبیین (R2) اندازه‌گیری شد.
 نتایج: به‌طور میانگین، در سطح ایران، 5/25% از سری زمانی LST ساعتی در سال 2022 به‌دلیل پوشش ابر از دست ‌رفته است که بیشترین میزان داده‌های ازدست‌رفته در حاشیۀ دریای خزر مشاهده شد. نتایج تحلیل سری زمانی LST ساعتی سالیانه در اندازۀ پنجرۀ 96ساعته با آزمون مونت کارلو نشان داد مؤلفه‌های 1 تا 5 جزء مؤلفه‌‌های معنی‌دار این سری زمانی‌اند. این مؤلفه‌ها 5/97% از تغییرات سری زمانی LST را در کنترل دارند. فرکانس‌ مربوط به مؤلفه‌های اول، دوم با سوم، چهارم با پنجم به‌ترتیب 0، 042/0 و 083/0 سیکل بر تصویر است. مؤلفۀ اول تغییرات دوره‌‌ای سالیانه، مؤلفۀ دوم با سوم تغییرات دوره‌ای 24ساعته یا روزانۀ دما، و مؤلفۀ چهارم با پنجم تغییرات دوره‌ای‌ 12ساعتۀ دما را نشان می‌دهد. براساس نتایج، RMSE و R2 بین داده‌های موجود و داده‌های بازسازی‌شدۀ سری زمانی LST ساعتی با استفاده از الگوریتم M-SSA، در شرایط آسمان صاف، به‌ترتیب 38/1 کلوین و 99/0 بود. همچنین در شرایط آسمان ابری، خطای RMSE تا سطح 80% دادۀ ازدست‌رفته به‌صورت تصادفی (ابر مصنوعی) همواره کمتر از 1/2 کلوین بود.
بحث و نتیجه‌گیری: کلید اصلی بازسازی سری‌های زمانی، با رفتار دوره‌ای، شناسایی مؤلفه‌های معنی‌دار دوره‌ای و روندهاست. در سری‌های زمانی LST ساعتی، دوره‌های سالیانه، 24، 12 و 8ساعته از مهم‌ترین مؤلفه‌های سری زمانی‌اند. این مؤلفه‌ها از چرخش زمین به دور خود و خورشید و انحراف محور آن شکل می‌گیرند. بنابراین، این مؤلفه‌ها اغلب برای بازسازی سری‌های زمانی LST ساعتی در بیشتر بخش‌های کرۀ زمین، یکسان‌اند. براساس یافته‌ها، الگوریتم M-SSA با توجه به در نظر گرفتن مؤلفه‌های دوره‌ای و روندها و همچنین استفاده از همبستگی زمانی و مکانی، می‌تواند در بازسازی داده‌های ازدست‌رفتۀ دارای فاصلۀ بزرگ در سری‌های زمانی LST مؤثر باشد. یکی از موارد شایان توجه در بازسازی اثر پوشش ابر، در پژوهش حاضر و بسیاری از پژوهش‌های دیگر، بازسازی دمای سطح زمین با شرط آسمان صاف است. بنابراین بازسازی دمای سطح زمین زیر پوشش ابر می‌تواند چالش و پیشنهادی برای مطالعات بیشتر در آینده باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Performance of the Singular Spectrum Analysis (SSA) Algorithm in Reconstructing Missing Data with Different Intensities in the Hourly Land Surface Temperature Time Series

نویسندگان [English]

  • Hadi Zare khormizi 1
  • Mohammad Jafari 1
  • Hamid Reza Ghafarian Malamiri 2
  • Ali Tavili 3
  • Hamidreza Keshtkar 4
1 Dep of Arid and Mountainous Regions Reclamation, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
2 Depof Geography, Department of Environmental Planning, Yazd University, Yazd, Iran.
3 Dep of Arid and Mountainous Regions Reclamation, Faculty of Natural Resources, University of Tehran, Karaj, Iran
4 Dep of Arid and Mountainous Regions Reclamation, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

Introduction and Purpose: Generating Land Surface Temperature (LST) data with temporal and spatial continuity is in great demand for hydrology, meteorology, ecology, environment, and, etc. studies. Approximately, 60 to 75 percent of the Earth is covered by clouds at any given moment. Therefore, clouds, by creating an obstacle, absorb part of the thermal energy emitted from the earth by affecting thermal infrared energy, creating gaps and outliers in LST time series data. Removing the effect of cloud cover is always a common problem in the field of using satellite images. The purpose of this research is to evaluate the performance of Multi-channel Singular Spectrum Analysis (M-SSA) in order to reconstruct gaps and remove outlier data due to the cloud coverage in the hourly LST time series of the Meteosat-9 satellite.
Materials and Methods: The study area in the present research was whole Iran. Also, the hourly LST time series of the SEVIRI sensor from the Meteosat-9 geostationary satellite in 2022 was used. At first, using SSA software and the Monte Carlo test, the window size and the number of significant components of an hourly LST time series were determined. Then, using the identified significant components, LST time series were reconstructed using M-SSA algorithm. Reconstruction error in clear sky conditions with available time series data and reconstruction error in cloudy sky conditions by creating artificial missing data (artificial cloud) with intensities of 10, 20, 30, ..., 90% in time series were evaluated using root mean square error (RMSE) and coefficient of determination (R2) statistics.
Results: On average, in Iran, 25.5% of the hourly LST time series in 2022 was lost due to cloud cover, and the highest percentage of lost data was observed at the edge of the Caspian Sea. The results of analyzing the annual hourly LST time series in a window size of 96 hours with the Monte Carlo test showed that components 1 to 5 are significant components of this time series. These components control 97.5% of the LST time series variance. The frequency of the first, second-third, and fourth-fifth components are respectively 0, 0.042 and 0.083 cycles per image. The first component indicates annual periodic changes, the second and third components indicate 24-hour or daily temperature changes, and the fourth and fifth components indicate 12-hour periodic temperature changes. Based on the results, the RMSE and the R2 between the original and the reconstructed data in clear sky conditions were 1.38 and 0.99 Kelvin, respectively. Also, in cloudy sky conditions, the RMSE error up to the level of 80% of randomly lost data (artificial cloud) was always less than 2.1 Kelvin.
Discussion and Conclusion: The main key to reconstructing time series with periodic behavior is to identify significant periodic components and trends. In hourly LST time series, annual, 24-, 12- and 8-hour periods are the most important components of the time series. These components are formed due to the rotation of the earth around itself and the sun and the deviation of its axis. Therefore, these components are generally the same for the reconstruction of hourly LST time series in the major part of the globe. Based on the findings, M-SSA algorithm can be effective in reconstructing lost data with large distance in LST time series due to consideration of periodic components and trends as well as using temporal and spatial correlation. One of the significant cases in reconstructing the effect of cloud cover in the present study and many other studies is the reconstruction of LST with the clear sky condition. Therefore, reconstruction of LST under cloud cover can be a challenge and suggestion for further studies in the future.

کلیدواژه‌ها [English]

  • Keywords: Cloud cover
  • Empirical Orthogonal Functions
  • Singular Spectrum Analysis
  • Temporal-spatial interpolation
  • Time series
Broomhead, D.S. & King, G.P., 1986, Extracting Qualitative Dynamics from Experimental Data, Physica D: Nonlinear Phenomena, 20, PP. 217-236, https://doi.org/ 10.1016/0167-2789(86)90031-X.
Chakraborty, S.D., Kant, Y. & Mitra, D., 2015, Assessment of Land Surface Temperature and Heat Fluxes over Delhi Using Remote Sensing Data, Journal of Environmental Management, 148, PP. 143-152, https:// doi.org/10.1016/j.jenvman.2013.11.034.
Chen, D., Zhuang, Q., Zhu, L. & Zhang, W., 2022, Comparison of Methods for Reconstructing MODIS Land Surface Temperature under Cloudy Conditions, Applied Sciences, 12(12), P. 6068, https://doi.org/10.3390/app12126068.
Cui, J., Zhang, M., Song, D., Shan, X. & Wang, B., 2022, MODIS Land Surface Temperature Product Reconstruction Based on the SSA-BiLSTM Model, Remote Sensing, 14(4), P. 958, https://doi.org/10.3390/rs14040958.
Freitas, S.C., Trigo, I.F., Macedo, J., Barroso, C., Silva, R. & Perdigão, R., 2013, Land Surface Temperature from Multiple Geostationary Satellites, International Journal of Remote Sensing, 34(9-10), PP. 3051-3068, https://doi.org/10.1080/01431161.2012.716925.
Geng, L., Ma, M., Wang, X., Yu, W., Jia, S. & Wang, H., 2014, Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor Time-Series NDVI Data Sets in the Heihe River Basin, China, Remote Sensing, 6(3), PP. 2024-2049, https://doi.org/10.3390/rs6032024.
Ghafarian Malamiri, H.R., 2015, Reconstruction of Gap-Free Time Series Satellite Observations of Land Surface Temperature to Model Spectral Soil Thermal Admittance, Doctoral Dissertation, Technische Universiteit Delft, The Netherlands, https://doi.org/10.4233/uuid: 63dc3402-9fd6-4594-a00e-7aa5ae2501aa.
 
Ghafarian Malamiri, H.R. & Zare Khormizie, H., 2017, Reconstruction of Cloud-Free Time Series Satellite Observations of Land Surface Temperature (LST) Using Harmonic Analysis of Time Series Algorithm (HANTS), Journal of RS and GIS for Natural Resources, 8(3), PP. 37-55, http://dorl.net/dor/20.1001.1.26767082.1396.8.3.3.0.
Ghafarian, H.R., Menenti, M., Jia, L.H. & den Ouden, R., 2012, Reconstruction of Cloud-Free Time Series Satellite Observations of Land Surface Temperature, EARSeL eProceedings (PP. 121-131).
Ghafarian Malamiri, H.R., Rousta, I., Olafsson, H., Zare, H. & Zhang, H., 2018, Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA), Atmosphere, 9(9), P. 334, https://doi.org/ 10.3390/atmos9090334.
Golyandina, N., Nekrutkin, V. & Zhigljavsky, A., 2001, Analysis of Time Series Structure: SSA and Related Techniques, Washington DC, USA: Chapman & Hall/CRC.
Helman, D., Lensky, I.M., Yakir, D. & Osem, Y., 2017, Forests Growing under Dry Conditions Have Higher Hydrological Resilience to Drought than Do More Humid Forests, Global Change Biology, 23(7), PP. 2801-2817, https://doi.org/ 10.1111/gcb.13551.
Julien, Y. & Sobrino, J.A., 2010, Comparison of Cloud-Reconstruction Methods for Time Series of Composite NDVI Data, Remote Sensing of Environment, 114(3), PP. 618-625, https://doi.org/10.1016/j.rse.2009.11.001.
Ke, L., Ding, X. & Song, C., 2013, Reconstruction of Time-Series MODIS LST in Central Qinghai-Tibet Plateau Using Geostatistical Approach, IEEE Geoscience and Remote Sensing Letters, 10(6), PP. 1602-1606, https://doi.org/ 10.1109/LGRS.2013.2263553.
Kleipool, Q.L., Dobber, M.R., de Haan, J. & Levelt, P.F., 2008, Earth Surface Reflectance Climatology from 3 Years of OMI Data, Journal of Geophysical Research: Atmospheres, 113(D18), https://doi.org/10.1029/2008JD010290.
Kondrashov, D. & Ghil, M., 2006, Spatio-Temporal Filling of Missing Points in Geophysical Data Sets, Nonlinear Processes in Geophysics, 13(2), PP. 151-159, https://doi.org/10.5194/npg-13-151-2006.
Kondrashov, D., Shprits, Y. & Ghil, M., 2010, Gap Filling of Solar Wind Data by Singular Spectrum Analysis, Geophysical Research Letters, 37(15), https://doi.org/ 10.1029/2010GL044138.
Li, J., Carlson, B.E. & Lacis, A.A., 2013, Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: 1. An EOF Approach to Analyze the SpatialTemporal Variability of Aerosol Optical Depth Using Multiple Remote Sensing Data Sets, Journal of Geophysical Research: Atmospheres, 118(15), PP. 8640-8648, https://doi.org/ 10.1002/jgrd.50686.
Lu, L., Venus, V., Skidmore, A., Wang, T. & Luo, G., 2011, Estimating Land-Surface Temperature under Clouds Using MSG/SEVIRI Observations, International Journal of Applied Earth Observation and Geoinformation, 13(2), PP. 265-276, https://doi.org/10.1016/j.jag.2010.12.007.
Martins, J.P., Coelho e Freitas, S., Trigo, I.F., Barroso, C. & Macedo, J., 2023, Copernicus Global Land Operations-Lot I “Vegetation and Energy” Algorithm Theoretical Basis Document, Land Surface Temperature—LST, 1. V2.1. ISSUE I2.23.
Mukherjee, S., Joshi, P.K. & Garg, R.D., 2014, A Comparison of Different Regression Models for Downscaling Landsat and MODIS Land Surface Temperature Images over Heterogeneous Landscape, Advances in Space Research, 54(4), PP. 655-669, https://doi.org/10.1016/j.asr.2014.04.013.
Musial, J.P., Verstraete, M.M. & Gobron, N., 2011, Comparing the Effectiveness of Recent Algorithms to Fill and Smooth Incomplete and Noisy Time Series, Atmospheric CHEMISTRY and Physics, 11(15), PP. 7905-7923, https://doi.org/10.5194/acp-11-7905-2011.
Pede, T. & Mountrakis, G., 2018, An Empirical Comparison of Interpolation Methods for MODIS 8-Day Land Surface Temperature Composites across the Conterminous Unites States, ISPRS Journal of Photogrammetry and Remote Sensing, 142, PP. 137-150, https://doi.org/10.1016/ j.isprsjprs.2018.06.003.
Shiff, S., Helman, D. & Lensky, I.M., 2021, Worldwide Continuous Gap-Filled MODIS Land Surface Temperature Dataset, Scientific Data, 8(1), PP. 74, https://doi.org/ 10.1038/s41597-021-00861-7.
Sun, L., Chen, Z., Gao, F., Anderson, M., Song, L., Wang, L., ... & Yang, Y., 2017, Reconstructing Daily Clear-Sky Land Surface Temperature for Cloudy Regions from MODIS Data, Computers & Geosciences, 105, PP. 10-20, https://doi.org/ 10.1016/j.cageo.2017.04.007.
Vautard, R. & Ghil, M., 1989, Singular Spectrum Analysis in Nonlinear Dynamics, with Applications to Paleoclimatic Time Series, Physica D: Nonlinear Phenomena, 35, PP. 395-424, https://doi.org/10.1016/0167-2789 (89)90077-8.
Vautard, R., Yiou, P. & Ghil, M., 1992, Singular-Spectrum Analysis: A Toolkit for Short, Noisy Chaotic Signals, Physica D: Nonlinear Phenomena, 58(1-4), PP. 95-126, https://doi.org/10.1016/0167-2789(92)90103-T.
Verhoef, W., Menenti, M. & Azzali, S., 1996, Cover A colour Composite of NOAA-AVHRR-NDVI Based on Time Series Analysis (1981-1992), International Journal of Remote Sensing, 17(2), PP. 231-235, https://doi.org/10.1080/01431169608949001.
Wang, H., Mao, K., Yuan, Z., Shi, J., Cao, M., Qin, Z., ... & Tang, B., 2021, A Method for Land Surface Temperature Retrieval Based on Model-Data-Knowledge-Driven and Deep Learning, Remote Sensing of Environment, 265, P. 112665, https://doi.org/ 10.1016/j.rse.2021.112665.
Xu, Y. & Shen, Y., 2013, Reconstruction of the Land Surface Temperature Time Series Using Harmonic Analysis, Computers & Geosciences, 61, PP. 126-132, https://doi.org/10.1016/j.cageo.2013.08.009.
Yu, P., Zhao, T., Shi, J., Ran, Y., Jia, L., Ji, D. & Xue, H., 2022, Global Spatiotemporally Continuous MODIS Land Surface Temperature Dataset, Scientific Data, 9(1), P. 143, https://doi.org/10.1038/s41597- 022-01214-8.
Zare Khormizi, H., Tavili, A. & Ghafarian Malamiri, H.R., 2021, Estimation of Actual Evapotranspiration Using SEBAL Algorithm and Comparison with Improved FAO 56 Standard Evapotranspiration with KC-NDVI Relationship, Iranian Journal of Remote Sensing & GIS, 13(3), PP. 73-92, https://doi.org/10.52547/gisj.13.3.73.
Zare Khormizi, H., Ghafarian Malamiri, H.R. & Alian, S., 2023, Calculation of Land Surface Temperature Using a Generalized Split-Window Algorithm and the Reconstruction of Its Lost Data by Cloud Cover Through a Singular Spectral Analysis (SAA)-Algorithm, Desert, 28(1), PP. 27-48, https://doi.org/10.22059/jdesert. 2023.93537.
Zhang, C., Li, W. & Travis, D.J., 2009, Restoration of Clouded Pixels in Multispectral Remotely Sensed Imagery with Cokriging, International Journal of Remote Sensing, 30(9), PP. 2173-2195, https://doi.org/10.1080/01431160802549294.
Zhao, W. & Duan, S.B., 2020, Reconstruction of Daytime Land Surface Temperatures under Cloud-Covered Conditions Using Integrated MODIS/Terra Land Products and MSG Geostationary Satellite Data, Remote Sensing of Environment, 247, P. 111931, https://doi.org/10.1016/j.rse.2020. 111931.
Zhou, J., Jia, L. & Menenti, M., 2015, Reconstruction of Global MODIS NDVI Time Series: Performance of Harmonic ANalysis of Time Series (HANTS), Remote Sensing of Environment, 163, PP. 217-228, https://doi.org/10.1016/j.rse.2015.03.018.
Zhou, J., Jia, L., Hu, G. & Menenti, M., 2012, Evaluation of Harmonic Analysis of Time Series (HANTS): Impact of Gaps on Time Series Reconstruction, In 2012 Second International Workshop on Earth Observation and Remote Sensing Applications (PP. 31-35), IEEE, https://doi.org/10.1109/EORSA.2012. 6261129.
Zhou, W., Peng, B. & Shi, J., 2017, Reconstructing Spatial–Temporal Continuous MODIS Land Surface Temperature Using the DINEOF Method, Journal of Applied Remote Sensing, 11(4), PP. 046016-046016, https://doi.org/10.1117/ 1.JRS.11.046016.