Broomhead, D.S. & King, G.P., 1986, Extracting Qualitative Dynamics from Experimental Data, Physica D: Nonlinear Phenomena, 20, PP. 217-236, https://doi.org/ 10.1016/0167-2789(86)90031-X.
Chakraborty, S.D., Kant, Y. & Mitra, D., 2015, Assessment of Land Surface Temperature and Heat Fluxes over Delhi Using Remote Sensing Data, Journal of Environmental Management, 148, PP. 143-152, https:// doi.org/10.1016/j.jenvman.2013.11.034.
Chen, D., Zhuang, Q., Zhu, L. & Zhang, W., 2022, Comparison of Methods for Reconstructing MODIS Land Surface Temperature under Cloudy Conditions, Applied Sciences, 12(12), P. 6068, https://doi.org/10.3390/app12126068.
Cui, J., Zhang, M., Song, D., Shan, X. & Wang, B., 2022, MODIS Land Surface Temperature Product Reconstruction Based on the SSA-BiLSTM Model, Remote Sensing, 14(4), P. 958, https://doi.org/10.3390/rs14040958.
Freitas, S.C., Trigo, I.F., Macedo, J., Barroso, C., Silva, R. & Perdigão, R., 2013, Land Surface Temperature from Multiple Geostationary Satellites, International Journal of Remote Sensing, 34(9-10), PP. 3051-3068, https://doi.org/10.1080/01431161.2012.716925.
Geng, L., Ma, M., Wang, X., Yu, W., Jia, S. & Wang, H., 2014, Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor Time-Series NDVI Data Sets in the Heihe River Basin, China, Remote Sensing, 6(3), PP. 2024-2049, https://doi.org/10.3390/rs6032024.
Ghafarian Malamiri, H.R., 2015, Reconstruction of Gap-Free Time Series Satellite Observations of Land Surface Temperature to Model Spectral Soil Thermal Admittance, Doctoral Dissertation, Technische Universiteit Delft, The Netherlands, https://doi.org/10.4233/uuid: 63dc3402-9fd6-4594-a00e-7aa5ae2501aa.
Ghafarian Malamiri, H.R. & Zare Khormizie, H., 2017,
Reconstruction of Cloud-Free Time Series Satellite Observations of Land Surface Temperature (LST) Using Harmonic Analysis of Time Series Algorithm (HANTS), Journal of RS and GIS for Natural Resources, 8(3), PP. 37-55,
http://dorl.net/dor/20.1001.1.26767082.1396.8.3.3.0.
Ghafarian, H.R., Menenti, M., Jia, L.H. & den Ouden, R., 2012, Reconstruction of Cloud-Free Time Series Satellite Observations of Land Surface Temperature, EARSeL eProceedings (PP. 121-131).
Ghafarian Malamiri, H.R., Rousta, I., Olafsson, H., Zare, H. & Zhang, H., 2018, Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA), Atmosphere, 9(9), P. 334, https://doi.org/ 10.3390/atmos9090334.
Golyandina, N., Nekrutkin, V. & Zhigljavsky, A., 2001, Analysis of Time Series Structure: SSA and Related Techniques, Washington DC, USA: Chapman & Hall/CRC.
Helman, D., Lensky, I.M., Yakir, D. & Osem, Y., 2017, Forests Growing under Dry Conditions Have Higher Hydrological Resilience to Drought than Do More Humid Forests, Global Change Biology, 23(7), PP. 2801-2817, https://doi.org/ 10.1111/gcb.13551.
Julien, Y. & Sobrino, J.A., 2010, Comparison of Cloud-Reconstruction Methods for Time Series of Composite NDVI Data, Remote Sensing of Environment, 114(3), PP. 618-625, https://doi.org/10.1016/j.rse.2009.11.001.
Ke, L., Ding, X. & Song, C., 2013,
Reconstruction of Time-Series MODIS LST in Central Qinghai-Tibet Plateau Using Geostatistical Approach, IEEE Geoscience and Remote Sensing Letters, 10(6), PP. 1602-1606, https://doi.org/
10.1109/LGRS.2013.2263553.
Kleipool, Q.L., Dobber, M.R., de Haan, J. & Levelt, P.F., 2008, Earth Surface Reflectance Climatology from 3 Years of OMI Data, Journal of Geophysical Research: Atmospheres, 113(D18), https://doi.org/10.1029/2008JD010290.
Kondrashov, D. & Ghil, M., 2006, Spatio-Temporal Filling of Missing Points in Geophysical Data Sets, Nonlinear Processes in Geophysics, 13(2), PP. 151-159, https://doi.org/10.5194/npg-13-151-2006.
Kondrashov, D., Shprits, Y. & Ghil, M., 2010, Gap Filling of Solar Wind Data by Singular Spectrum Analysis, Geophysical Research Letters, 37(15), https://doi.org/ 10.1029/2010GL044138.
Li, J., Carlson, B.E. & Lacis, A.A., 2013, Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: 1. An EOF Approach to Analyze the Spatial‐Temporal Variability of Aerosol Optical Depth Using Multiple Remote Sensing Data Sets, Journal of Geophysical Research: Atmospheres, 118(15), PP. 8640-8648, https://doi.org/ 10.1002/jgrd.50686.
Lu, L., Venus, V., Skidmore, A., Wang, T. & Luo, G., 2011, Estimating Land-Surface Temperature under Clouds Using MSG/SEVIRI Observations, International Journal of Applied Earth Observation and Geoinformation, 13(2), PP. 265-276, https://doi.org/10.1016/j.jag.2010.12.007.
Martins, J.P., Coelho e Freitas, S., Trigo, I.F., Barroso, C. & Macedo, J., 2023, Copernicus Global Land Operations-Lot I “Vegetation and Energy” Algorithm Theoretical Basis Document, Land Surface Temperature—LST, 1. V2.1. ISSUE I2.23.
Mukherjee, S., Joshi, P.K. & Garg, R.D., 2014, A Comparison of Different Regression Models for Downscaling Landsat and MODIS Land Surface Temperature Images over Heterogeneous Landscape, Advances in Space Research, 54(4), PP. 655-669, https://doi.org/10.1016/j.asr.2014.04.013.
Musial, J.P., Verstraete, M.M. & Gobron, N., 2011, Comparing the Effectiveness of Recent Algorithms to Fill and Smooth Incomplete and Noisy Time Series, Atmospheric CHEMISTRY and Physics, 11(15), PP. 7905-7923, https://doi.org/10.5194/acp-11-7905-2011.
Pede, T. & Mountrakis, G., 2018, An Empirical Comparison of Interpolation Methods for MODIS 8-Day Land Surface Temperature Composites across the Conterminous Unites States, ISPRS Journal of Photogrammetry and Remote Sensing, 142, PP. 137-150, https://doi.org/10.1016/ j.isprsjprs.2018.06.003.
Shiff, S., Helman, D. & Lensky, I.M., 2021, Worldwide Continuous Gap-Filled MODIS Land Surface Temperature Dataset, Scientific Data, 8(1), PP. 74, https://doi.org/ 10.1038/s41597-021-00861-7.
Sun, L., Chen, Z., Gao, F., Anderson, M., Song, L., Wang, L., ... & Yang, Y., 2017, Reconstructing Daily Clear-Sky Land Surface Temperature for Cloudy Regions from MODIS Data, Computers & Geosciences, 105, PP. 10-20, https://doi.org/ 10.1016/j.cageo.2017.04.007.
Vautard, R. & Ghil, M., 1989, Singular Spectrum Analysis in Nonlinear Dynamics, with Applications to Paleoclimatic Time Series, Physica D: Nonlinear Phenomena, 35, PP. 395-424, https://doi.org/10.1016/0167-2789 (89)90077-8.
Vautard, R., Yiou, P. & Ghil, M., 1992, Singular-Spectrum Analysis: A Toolkit for Short, Noisy Chaotic Signals, Physica D: Nonlinear Phenomena, 58(1-4), PP. 95-126, https://doi.org/10.1016/0167-2789(92)90103-T.
Verhoef, W., Menenti, M. & Azzali, S., 1996, Cover A colour Composite of NOAA-AVHRR-NDVI Based on Time Series Analysis (1981-1992), International Journal of Remote Sensing, 17(2), PP. 231-235, https://doi.org/10.1080/01431169608949001.
Wang, H., Mao, K., Yuan, Z., Shi, J., Cao, M., Qin, Z., ... & Tang, B., 2021, A Method for Land Surface Temperature Retrieval Based on Model-Data-Knowledge-Driven and Deep Learning, Remote Sensing of Environment, 265, P. 112665, https://doi.org/ 10.1016/j.rse.2021.112665.
Xu, Y. & Shen, Y., 2013, Reconstruction of the Land Surface Temperature Time Series Using Harmonic Analysis, Computers & Geosciences, 61, PP. 126-132, https://doi.org/10.1016/j.cageo.2013.08.009.
Yu, P., Zhao, T., Shi, J., Ran, Y., Jia, L., Ji, D. & Xue, H., 2022, Global Spatiotemporally Continuous MODIS Land Surface Temperature Dataset, Scientific Data, 9(1), P. 143, https://doi.org/10.1038/s41597- 022-01214-8.
Zare Khormizi, H., Tavili, A. & Ghafarian Malamiri, H.R., 2021,
Estimation of Actual Evapotranspiration Using SEBAL Algorithm and Comparison with Improved FAO 56 Standard Evapotranspiration with KC-NDVI Relationship, Iranian Journal of Remote Sensing & GIS, 13(3), PP. 73-92,
https://doi.org/10.52547/gisj.13.3.73.
Zare Khormizi, H., Ghafarian Malamiri, H.R. & Alian, S., 2023, Calculation of Land Surface Temperature Using a Generalized Split-Window Algorithm and the Reconstruction of Its Lost Data by Cloud Cover Through a Singular Spectral Analysis (SAA)-Algorithm, Desert, 28(1), PP. 27-48, https://doi.org/10.22059/jdesert. 2023.93537.
Zhang, C., Li, W. & Travis, D.J., 2009, Restoration of Clouded Pixels in Multispectral Remotely Sensed Imagery with Cokriging, International Journal of Remote Sensing, 30(9), PP. 2173-2195, https://doi.org/10.1080/01431160802549294.
Zhao, W. & Duan, S.B., 2020, Reconstruction of Daytime Land Surface Temperatures under Cloud-Covered Conditions Using Integrated MODIS/Terra Land Products and MSG Geostationary Satellite Data, Remote Sensing of Environment, 247, P. 111931, https://doi.org/10.1016/j.rse.2020. 111931.
Zhou, J., Jia, L. & Menenti, M., 2015, Reconstruction of Global MODIS NDVI Time Series: Performance of Harmonic ANalysis of Time Series (HANTS), Remote Sensing of Environment, 163, PP. 217-228, https://doi.org/10.1016/j.rse.2015.03.018.
Zhou, J., Jia, L., Hu, G. & Menenti, M., 2012, Evaluation of Harmonic Analysis of Time Series (HANTS): Impact of Gaps on Time Series Reconstruction, In 2012 Second International Workshop on Earth Observation and Remote Sensing Applications (PP. 31-35), IEEE, https://doi.org/10.1109/EORSA.2012. 6261129.
Zhou, W., Peng, B. & Shi, J., 2017,
Reconstructing Spatial–Temporal Continuous MODIS Land Surface Temperature Using the DINEOF Method, Journal of Applied Remote Sensing, 11(4), PP. 046016-046016,
https://doi.org/10.1117/ 1.JRS.11.046016.