ارزیابی مناطق مستعد بیابان‌‍‌زایی با تأکید بر مدل‌های فرسایش به‌کمک تحلیل‌های تصمیم‌گیری چندمعیاره (مطالعۀ موردی: سوچرزون سیستان و بلوک افغان)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه جغرافیا دانشگاه فردوسی مشهد، آزمایشگاه علم / سیستم اطلاعات جغرافیایی و سنجش از دور (GISSRS: Lab)، مشهد، ایران

چکیده

سابقه و هدف: بیابان‌زایی یکی از چالش‌های مهم دنیای امروز است که پایداری محیط‌زیست را تهدید می‌کند. این پدیده از تخریب زمین در مناطق خشک و نیمه‌خشک ناشی می‌شود و می‌تواند پیامدهای جدی برای محیط‌زیست، اقتصاد و جامعه داشته باشد. ایران، به‌دلیل موقعیت جغرافیایی‌اش در کمربند خشک و نیمه‌خشک جهان، درمعرض خطر بیابان‌زایی قرار دارد. برای مقابله با این پدیده، شناسایی و ارزیابی عوامل مؤثر، تعیین مناطق آسیب‌پذیر و استفاده از مدل‌هایی به‌منظور ارزیابی این پدیده ضروری است. در این راستا، استفاده از علم سنجش از دور و سیستم اطلاعات جغرافیایی (GIS) می‌تواند در ارزیابی و نظارت بر بیابان‌زایی مفید باشد. این فنّاوری‌ها امکان بررسی گسترده و دقیق تغییرات پوشش زمین را فراهم می‌آورند و به مدیریت و حفاظت از مناطق درمعرض خطر کمک می‌کنند. هدف این پژوهش شناسایی مناطق مستعد بیابان‌زایی در کمربند شرقی ایران (سوچرزون سیستان و بلوک افغان)، با استفاده از مدل تحلیل‌های تصمیم‌گیری چندمعیاره، مبتنی‌بر رویکرد اولویت ترتیبی (OPA) است.
مواد و روش‌ها: زون زمین‌شناسی سیستان و بلوک افغان، با مساحت بیش از 106هزار کیلومترمربع، در کمربند شرقی ایران قرار دارد و شامل بخش‌هایی از استان سیستان و بلوچستان و خراسان جنوبی می‌شود. این منطقه، براساس طبقه‌بندی اقلیمی دومارتن، در اقلیم خشک و فراخشک قرار می‌گیرد. وجود چنین شرایطی در این منطقه، همراه با تخریب پوشش گیاهی و خشک شدن منابع آبی، آن را مستعد بیابان‌زایی کرده است. در این پژوهش برای به دست آوردن نقشۀ مناطق مستعد بیابان‌زایی، در ابتدا، نقشۀ پتانسیل فرسایش بادی و فرسایش آبی، به‌ترتیب با استفاده از مدل‌های RWEQ و RUSLE در منطقۀ مورد مطالعه حاصل شد. سپس نتایج این مدل‌ها به‌همراه سایر شاخص‌ها، ازقبیل پوشش گیاهی، شوری خاک، کاربری اراضی، درجۀ حرارت، رده‌بندی خاک، جرم مخصوص ظاهری خاک و طبقه‌بندی اقلیمی، با استفاده از مدل تصمیم‌گیری چندمعیاره مبتنی‌بر اولویت ترتیبی (OPA) وزن‌دهی شدند و در نهایت، نقشۀ مناطق مستعد بیابان‌زایی در کمربند شرقی ایران به دست آمد.
نتایج و بحث: نتایج این مطالعه نشان داد که میانگین پتانسیل فرسایش بادی، در کمربند شرقی ایران، 64 کیلوگرم بر مترمربع است. این درحالی است که 16% این منطقه، که اغلب در بخش‌های شرقی و جنوب‌شرق قرار دارد و شامل شهرستان‌های زابل، سراوان و خاش می‌شود، دارای پتانسیل فرسایش بادی بیش از 512 کیلوگرم بر مترمربع است. در مقابل، میانگین فرسایش آبی 24/36 تن در هکتار به دست آمده است؛ بیشترین میزان فرسایش آبی بیش از 40 تن در هکتار و در 5/34% از مساحت منطقۀ مورد مطالعه رخ می‌دهد که اغلب در شمال منطقه، شامل شهرستان نهبندان در استان خراسان جنوبی و بخش‌های مرکزی منطقه واقع شده است. در نهایت، نتایج مدل تصمیم‌گیری ‌چندمعیاره ‌مبتنی‌بر اولویت ترتیبی نشان داد که مهم‌ترین شاخص‌ها ازمنظر متخصصان، در شناسایی مناطق مستعد بیابان‌زایی در این منطقه، شاخص‌های فرسایش بادی و پوشش گیاهی و شوری خاک است و بخش‌های شرقی و جنوب‌شرق ناحیه به‌شدت تحت تأثیر بیابان‌زایی قرار دارند.
بحث و بررسی: فرسایش در کمربند شرقی ایران پیامدهای منفی متعددی دارد؛ ازجمله کاهش حاصلخیزی خاک و تهدید معیشت، امنیت غذایی و سلامت مردم. تخریب پوشش گیاهی، از بین رفتن منابع آبی و تبدیل این مناطق به زمین‌های بایر، به‌خصوص در نیمۀ شرقی ایران که در سال‌های اخیر با پدیدۀ خشکسالی گسترده‌ای مواجه شده‌اند، بیشترین تأثیر را در بیابان‌زایی داشته است. برای مقابله با این مشکل، به ابتکارات مدیریتی مانند مدیریت منابع آب، توسعۀ کشاورزی پایدار و حفاظت از تنوع زیستی نیاز است. این ابتکارها باید، با توجه به شرایط خاص هر منطقه و با مشارکت جوامع محلی و متخصصان، طراحی و اجرا شوند. نتایج این مطالعه نشان داد که استفاده از مدل‌های ‌مبتنی‌بر رویکرد اولویت ترتیبی می‌تواند، در شناسایی مناطق آسیب‌پذیر به‌منظور تدوین برنامه‌های مدیریتی، مؤثر باشد. همچنین استفاده از شاخص‌هایی مانند مدیریت چرا، جمعیت و سطح آب‌های زیرزمینی، در مطالعات آتی، امکان ارزیابی بهتر وضعیت بیابان‌زایی را فراهم می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Areas Susceptible to Desertification with Emphasis on Erosion Models Using Multi-Criteria Decision Analysis A Case Study (Sistan Suture Zone and Afghan Blocks)

نویسندگان [English]

  • Sajjad Taleghani
  • Atefe Bardooei
  • Amir Hossein Najafi Dehjalali
  • Masoud Minaei
Dep of Geography, Geographic Information Science/System and Remote Sensing Laboratory (GISSRS: Lab), Ferdowsi University of Mashhad, Mashhad , Iran
چکیده [English]

Introduction: Desertification is one of the major challenges of today's world, threatening environmental sustainability. This phenomenon arises from land degradation in arid and semi-arid regions and can have serious consequences for the environment, economy, and society. Due to its geographic location in the dry and semi-arid belt of the world, Iran is at risk of desertification. To combat this phenomenon, it is essential to identify and assess the influential factors, determine vulnerable areas, and use models to evaluate this issue. The use of remote sensing technologies and Geographic Information Systems (GIS) can be beneficial in assessing and monitoring desertification. These technologies enable comprehensive and accurate examination of land cover changes and assist in the management and protection of at-risk areas. This study aims to identify areas susceptible to desertification in the eastern belt of Iran (Sistan Suture Zone and Afghan Blocks) using multi-criteria decision analysis models based on the Ordered Preferential Approach (OPA).
Materials and Methods: The geological zone of Sistan and the Afghan Blocks, covering an area of over 106,000 square kilometers, is located in the eastern belt of Iran and includes parts of Sistan and Baluchestan and South Khorasan provinces. According to the De Martonne climate classification, this area falls within the arid and hyper-arid climate zones. Such conditions, along with vegetation degradation and the drying up of water resources, have made this region susceptible to desertification. In this study, to obtain a map of areas prone to desertification, wind and water erosion potential maps were first generated using the RWEQ and RUSLE models, respectively, in the study area. The results of these models, along with other indicators such as vegetation cover, soil salinity, land use, temperature, soil classification, bulk density, and climate classification, were weighted using a multi-criteria decision analysis model based on the Ordered Preferential Approach (OPA). Finally, a map of areas susceptible to desertification in the eastern belt of Iran was produced.
Results and Discussion: The results of this study showed that the average wind erosion potential in the eastern belt of Iran is 64 kg per square meter. Notably, 16% of this area, primarily located in the eastern and southeastern parts, including the cities of Zabol, Saravan, and Khash, has a wind erosion potential exceeding 512 kg per square meter. In contrast, the average water erosion was found to be 24.36 tons per hectare, with the highest rates of water erosion exceeding 40 tons per hectare covering 34.5% of the study area, primarily in the northern region, including the city of Nehbandan in South Khorasan province and central parts of the area. Finally, the results of the multi-criteria decision analysis model based on the Ordered Preferential Approach indicated that the most significant factors identified by experts in recognizing areas susceptible to desertification in this region are wind erosion, vegetation cover, and soil salinity. The eastern and southeastern parts of the area are severely affected by desertification.
Conclusion: Erosion in the eastern belt of Iran has multiple negative consequences, including reduced soil fertility and threats to livelihoods, food security, and public health. The degradation of vegetation, loss of water resources, and conversion of these areas into barren lands, particularly in the eastern half of Iran, which has faced extensive drought in recent years, have had the most significant impact on desertification. To deal with this problem, there is a need for management such as resource management, sustainable agricultural development and biodiversity conservation. These initiatives should be designed and implemented considering the specific conditions of each region and with the participation of local communities and experts. The results of this study indicate that the use of models based on the Ordered Preferential Approach can be effective in identifying vulnerable areas for the formulation of effective management plans. Additionally, incorporating indicators such as grazing management, population, and groundwater levels in future studies will facilitate a better assessment of desertification status.

کلیدواژه‌ها [English]

  • Keywords: OPA
  • RWEQ
  • RUSLE
  • MCDM
  • Desertification
  • Erosion
Abbasi, H.R., Opp, C., Groll, M., Rohipour, H., Khosroshahi, M., Khaksarian, F. & Gohardoust, A., 2018, Spatial and Temporal Variation of the Aeolian Sediment Transport in the Ephemeral Baringak Lake (Sistan Plain, Iran) Using Field Measurements and Geostatistical Analyses, Z. Geomorphol, 61(4), PP. 315-326, https://doi.org/10.1127/zfg/2018/0451.
Afifi, M.E. & Sohrabi, V., 2023, Assessing the State of Desertification in the Shahrbabak Plain Watershed Using Medalus Model and Remote Sensing Data, Natural Ecosystems of Iran, 1(1), PP. 38-59, https://sanad.iau.ir/en/Article/983390.
Akbari, M., Memarian, H., Neamatollahi, E., Jafari Shalamzari, M., Alizadeh Noughani, M. & Zakeri, D., 2021, Prioritizing Policies and Strategies for Desertification Risk Management Using MCDM–DPSIR Approach in Northeastern Iran, Environ-ment, Development and Sustainability, 23, PP. 2503-2523, https://doi.org/10.1007/s10668-020-00684-3.
Albalawi, E.K. & Kumar, L., 2013, Using Remote Sensing Technology to Detect, Model and Map Desertification: A Review, Journal of Food, Agriculture & Environment, 11(2), PP. 791-797.
Ansari, M., Mahmoodi, H. & Jafari, A., 2011, Assessment of Water Erosion in Bampour Watershed, Iranian Journal of Range and Desert Research, 19(2), PP. 279-293.
Ataei, Y., Mahmoudi, A., Feylizadeh, M.R. & Li, D.-F., 2020, Ordinal Priority Approach (OPA) in Multiple Attribute Decision-Making, Applied Soft Computing, 86, P. 105893, https://doi.org/ https://doi.org/10.1016/j.asoc.2019.105893.
Bakhshandehmehr, L., Soltani, S. & Sepehr, A., 2013, Assessment of Present Status of Desertification and Modifying the MEDALUS Model in Segzi Plain of Isfahan, Journal of Range and Watershed Managment, 66(1), PP. 27-41.
Becerril-Piña, R., Díaz-Delgado, C., Mastachi-Loza, C.A. & González-Sosa, E., 2016, Integration of Remote Sensing Techniques for Monitoring Desertification in Mexico, Human and Ecological Risk Assessment: An International Journal, 22(6), PP. 1323-1340, https://doi.org/10.1080/10807039.2016.1169914.
 
Blanco, H. & Lal, R., 2008, Principles of Soil Conservation and Management, Vol. 167169, Springer New York, https://doi.org/ 10.1007/978-1-4020-8709-7.
Boali, A. & Mohammadian Behbahani, A., 2019, Assessing Intensity, Risk of Desertification and Management Program (Case Study Area: Segazi Plain of Isfahan), Geography and Development, 17(56), PP. 181-194, DOI: 10.22111/gdij.2019.4896.
Bouabid, R., Rouchdi, M., Badraoui, M., Diab, A. & Louafi, S., 2010, Assessment of Land Desertification Based on the MEDALUS Approach and Elaboration of an Action Plan: The Case Study of the Souss River Basin, Morocco, Land Degradation and Desertification: Assessment, Mitigation and Remediation, Springer, PP. 131-145, DOI: 10.1007/978-90-481-8657-0-10.
Boudjemline, F. & Semar, A., 2018, Assessment and Mapping of Desertification Sensitivity with MEDALUS Model and GIS–Case Study: Basin of Hodna, Algeria, Journal of Water and Land Development, DOI: 10.2478/jwld-2018-0002.
Chepil, W. & Woodruff, N.P., 1959, Estimations of Wind Erodibility of Farm Fields, Agricultural Research Service, US Department of Agriculture.
Cheki Forak, M., Doostan, R. & Minaei, M., 2023, Identification of Dust Centers in Birjand City, Geography and Territorial Spatial Arrangement, 13(46), PP. 61-84, DOI: 10.22111/gaij.2023.42530.3034.
Dastorani, M. & Jafari Shalamzari, M., 2022, Comparison of Fuzzy Method and Integrated Desertification Index (IDI) in Assessing the Intensity of Desertification in Torbat-e-Heydariyeh of Khorasan Razavi Province with Emphasis on Vegetation Indices, Journal of Arid Biome, 12(1), PP. 63-75, DOI: 10.29252/aridbiom. 2023.18283.1887.
Djili, K. & Doud, Y., 1999, Relationship between pH and Calcium Carbonate Content of Soils. The Case of Northern Algeria Soils, Agrochimica (Italy), DOI: 10.11766/trxb201605140243.
Durigon, V.L., Carvalho, D.F., Antunes, M.A.H., Oliveira, P.T.S. & Fernandes, M.M., 2014, NDVI Time Series for Monitoring RUSLE Cover Management Factor in a Tropical Watershed, International Journal of Remote Sensing, 35(2), PP. 441-453, https://doi.org/10.1080/01431161.2013.871081.
El Baroudy, A., 2011, Monitoring Land Degradation Using Remote Sensing and GIS Techniques in an Area of the Middle Nile Delta, Egypt, Catena, 87(2), PP. 201-208, https://doi.org/10.1016/j.catena.2011. 05.023.
Forests and Rangelands Organization, 2009, Preparation of Soil Erosion Potential Map of Sistan and Baluchestan Province, Forests and Rangelands Organization.
Fathi-Taperasht, A., Shafizadeh-Moghadam, H., Minaei, M. & Xu, T., 2022, Influence of Drought Duration and Severity on Drought Recovery Period for Different Land Cover Types: Evaluation Using MODIS-Based Indices, Ecological Indicators, 141, P. 109146, https://doi.org/ 10.1016/j.ecolind.2022.109146.
Fryrear, D., Sutherland, P., Davis, G., Hardee, G. & Dollar, M., 1999, Wind Erosion Estimates with RWEQ and WEQ. Proceedings of Conference Sustaining the Global Farm, 10th International Soil Conservation Organization Meeting, Purdue University.
Ghasemifar, E., Minaei, M., Shen, M. & Rezaei, M., 2022, Analysing Spatio-Temporal Patterns in Wintertime Rainfall across Iran’s Deserts Using GPM DPR Data, Arid Land Research and Management, 37(1), PP. 20-50, https://doi.org/ 10.1080/ 15324982.2022.2084703.
Habashi, K., Karimzadeh, H.R., Pour Manafi, S. & Jafari, R., 2018, Assessment of Desertification in East Isfahan Using Integration MEDALUS Model and Multi Criteria Analysis (MCA), Desert Management, 5(10), PP. 99-115, DOI: 10.22034/jdmal.2018.30671.
Han, Y., Zhao, W., Zhou, A. & Pereira, P., 2023, Water and Wind Erosion Response to Ecological Restoration Measures in China's Drylands, Geoderma, 435, P. 116514, https://doi.org/10.1016/j.geoderma. 2023.116514.
Kafash, R., Ruhimoghaddam, A., Einali, A., Afshari M. & Zolfaghari, F., 2018, Investigating the Impact of Climate, Vegetation, Wind Erosion and Soil Criteria in Assessing the Potential of Desertification Using GIS (Case Study: Moradabad Saravan Region), Pazhuhesh-ha-ye Noin-e Olum-e Jografiya-ye Memari va Shahrsazi, 14(2), PP. 15-29.
Kamali Maskooni, E., Kamali, M.A. & Khanamani, A., 2021, Investigation and Preparation of Desertification Map Based on Iranian Model of Desertification Potential (IMDPA) with an Emphasis on Two Criteria of Soil and Vegetation (Case Study: Faryab-Kerman Province), Journal of Environmental Science and Technology, 22(12), PP. 163-178, DOI: 10.22034/jest.2021.30618.3917.
Lyu, X., Li, X., Wang, H., Gong, J., Li, S., Dou, H. & Dang, D., 2021, Soil Wind Erosion Evaluation and Sustainable Management of Typical Steppe in Inner Mongolia, China, Journal of Environmental Management, 277, P. 111488, https://doi.org/ 10.1016/j.jenvman.2020.111488.
Mahmoudi, A., Deng, X., Javed, S.A. & Yuan, J., 2021, Large-Scale Multiple Criteria Decision-Making with Missing Values: Project Selection through TOPSIS-OPA, Journal of Ambient Intelligence and Humanized Computing, 12(10), PP. 9341-9362, https://doi.org/10.1007/s12652-020-02649-w.
Minaei, F., Minaei, M., Kougias, I., Shafizadeh-Moghadam, H. & Hosseini, S.A., 2021, Rural Electrification in Protected Areas: A Spatial Assessment of Solar Photovoltaic Suitability Using the Fuzzy Best Worst Method, Renewable Energy, 176, PP. 334-345, https://doi.org/10.1016/ j.renene.2021.05.087.
Minaei, M., 2023, Drones Help to Desert Ecosystems: The Use of RGB Indices and Open Source Software (A Case Study of Lut Desert), FOSS4G ASIA 2023 Toward Future of FOSS4G in Asia.Moore, I.D. & Burch, G.J., 1986a, Modelling Erosion and Deposition: Topographic Effects, Transactions of the ASAE, 29(6), PP. 1624-1630, https://doi.org/10.13031/2013.30363.
Moore, I.D. & Burch, G.J., 1986b, Physical Basis of the Length-Slope Factor in the Universal Soil Loss Equation, Soil Science Society of America Journal, 50(5), PP. 1294-1298, https://doi.org/10.2136/ sssaj1986.03615995005000050042x.
Negaresh, H., Rakhshani, Z., Firoozi, F. & Alinia, H., 2016, Desertification Assessment Using the Analytic Hierarchy Process and GIS in Southeast Iran, Geografiska Annaler: Series A, Physical Geography, 98(1), PP. 1-14, https://doi.org/10.1111/geoa.12120.
Negaresh, H., Fotoohi, S. & Soraya, R., 2020, Identification of the Factors Influencing the Hazards and the Difference in the Volume of Sediment Accumulated in the Villages of Nimroz, Journal of Spatial Analysis Environmental Hazards, 7(1), PP. 33-48, DOI: 10.29252/jsaeh.7.1.4.
Parysow, P., Wang, G., Gertner, G. & Anderson, A.B., 2003, Spatial Uncertainty Analysis for Mapping Soil Erodibility Based on Joint Sequential Simulation, CATENA, 53(1), PP. 65-78, https://doi.org/10.1016/ S0341-8162(02)00198-4.
Pishyar, S., Khosravi, H., Tavili, A. & Malekian, A., 2016, Ranking Effective Desertification Indices Using TOPSIS and Analytic Hierarchy Process (Case Study: Kashan Region), Journal of Natural Environmental Hazards, 5(8), PP. 83-96, DOI: 10.22111/jneh.2016.2818.
Rahdari, M.R., Caballero-Calvo, A., Kharazmi, R. & Rodrigo-Comino, J., 2023, Evaluating Temporal Sand Drift Potential Trends in the Sistan Region, Southeast Iran, Environmental Science and Pollution Research, 30(57), PP. 120266-120283.
Rashki, A., Kaskaoutis, D.G., Rautenbach, C.J.D., Eriksson, P.G., Qiang, M. & Gupta, P., 2012, Dust Storms and their Horizontal Dust Loading in the Sistan Region, Iran, Aeolian Research, 5, PP. 51-62, https://doi.org/10.1016/j.aeolia.2011.12.001.
Sadeghi Ravesh, M.H., 2022, Applying Fuzzy Logic in Quantitative Analysis of Strategies Adopted for Combating Desertification Using Critical Analysis Approach, Desert Ecosystem Engineering, 11(34), PP. 15-32, DOI: 10.22052/deej.2021.11.34.11.
Salvati, L., 2014, Toward a ‘Sustainable’ land Degradation? Vulnerability Degree and Component Balance in a Rapidly Changing Environment, Environment, Development and Sustainability, 16, PP. 239-254, https://doi.org/10.1007/s10668-013-9463-z.
Salvati, L., Zitti, M. & Perini, L., 2016, Fifty Years on: Long‐Term Patterns of Land Sensitivity to Desertification in Italy, Land Degradation & Development, 27(2), PP. 97-107, https://doi.org/10.1002/ldr.2226.
Sepehr, A., Hassanli, A., Ekhtesasi, M. & Jamali, J., 2007, Quantitative Assessment of Desertification in South of Iran Using MEDALUS Method, Environmental Monitoring and Assessment, 134, PP. 243-254, https://doi.org/10.1007/s10661-007-9613-6.
Shafizadeh-Moghadam, H., Minaei, M., Feng, Y. & Pontius, R.G., 2019, GlobeLand30 Maps Show Four Times Larger Gross than Net Land Change from 2000 to 2010 in Asia, International Journal of Applied Earth Observation and Geoinformation, 78, PP. 240-248, https://doi.org/10.1016/j.jag. 2019.01.003.
Shahroozi, M., Ahmadi, F. & Hekmatnia, H., 2015, Evaluation of Water Erosion in the Zahak Watershed Using the RUSLE Model, Journal of Water and Soil Conservation Research, 22(1), PP. 43-58.
Shihab, T.H. & Al-hameedawi, A.N., 2020, Desertification Hazard Zonation in Central Iraq Using Multi-Criteria Evaluation and GIS, Journal of the Indian Society of Remote Sensing, 48(3), PP. 397-409, https://doi.org/ 10.1007/s12524-019-01079-2.
Silakhori, E., Ownegh, M. & Soleimani Sardo, M., 2019, Assessment of Risk and Hazard Desertification Using Topsis-GIS Method (Case Study: Bashtin, Sabzevar, Razavi Province), Journal of Arid Regions Geographic Studies, 10(35), PP. 44-59.
Stone, R.P.H., 2000, Fact Sheet, Universal Soil Loss Equation, Ministry of Agriculture.
USDA, 1985, Hydrology, National Engineering Handbook, Section 4, US Department of Agriculture, Washington, DC, USA.
Woodruff, N.P. & Siddoway, F., 1965, A Wind Erosion Equation, Soil Science Society of America Journal, 29(5), PP. 602-608, https://doi.org/10.2136/sssaj1965.03615995002900050035x.
Yang, X., Yang, Q., Zhu, H., Wang, L., Wang, C., Pang, G., Du, C., Mubeen, M., Waleed, M. & Hussain, S., 2023, Quantitative Evaluation of Soil Water and Wind Erosion Rates in Pakistan, Remote Sensing, 15(9), P. 2404, https://doi.org/ 10.3390/rs15092404.
Youssef, F., Visser, S., Karssenberg, D., Bruggeman, A. & Erpul, G., 2012, Calibration of RWEQ in a Patchy landscape; A First Step towards a Regional Scale Wind Erosion Model, Aeolian Research, 3(4), PP. 467-476, https://doi.org/ 10.1016/j.aeolia.2011.03.009.

Zolfaghari, F., Shahriari, A., Fakhireh, A., Rashki, A.R., Noori, S. & Khosravi, H., 2011, Assessment of Desertification Potential Using Imdpa Model in Sistan Plain, Watershed Management Researches (Pajouhesh-va-Sazandegi), 24(2 (91)), PP. 97-107, SID: https://sid.ir/paper/200655.