ارزیابی کیفیت هوا با نظارت بر پارامترهای PM10 و PM2.5 با استفاده از تصاویر ماهواره‌ای چند طیفی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه سنجش از دور، دانشکده نقشه برداری، دانشگاه تهران، تهران، ایران

2 دانشکده ژئوماتیک،دانشگاه ITS, سورابایا،اندونزی

چکیده

سابقه و هدف: آلودگی هوا، به‌ویژه وجود ذرات معلق(PM2.5 وPM10)، یکی از چالش‌های جدی در شهرهای بزرگ است که پیامدهای مخربی بر سلامت عمومی، اکوسیستم‌ها و کیفیت زندگی دارد. این تأثیرات در مناطق پر جمعیتی مانند تهران به‌وضوح بیشتر احساس می‌شود. ازاین‌رو، نظارت و پیش‌بینی دقیق کیفیت هوا برای تصمیم‌گیری‌های مؤثر در حوزه سیاست‌گذاری و سلامت عمومی ضروری است. بااین‌حال، محدودیت پوشش مکانی ایستگاه‌های زمینی سنجش کیفیت هوا مانع از ثبت کامل تغییرات کیفیت هوا در سطح شهر می‌شود. در این پژوهش، برای غلبه بر این محدودیت، از تصاویر ماهواره‌ای لندست-8 و سنتینل-2 به‌منظور توسعه مدل‌هایی برای پیش‌بینی غلظت ذرات معلق، به‌ویژه PM2.5 و PM10، استفاده شده است. این مطالعه با ترکیب داده‌های بازتاب طیفی ماهواره‌ای و مدل‌های یادگیری ماشین، به شناسایی کارآمدترین مدل‌ها برای پیش‌بینی آلودگی هوا و تعیین باندهای طیفی مؤثر در برآورد غلظت ذرات معلق پرداخته است.

مواد و روش‌ها: در گام نخست، مدل‌های رگرسیون خطی با استفاده از روابط تک‌باندی و ترکیب باندها برای ایجاد ارتباط خطی بین بازتاب طیفی و غلظت ذرات معلق توسعه یافتند. سپس روابط غیرخطی برای مدل‌سازی روابط پیچیده‌‌تر بازتاب طیفی و ذرات معلق بررسی شدند. برای بهینه‌سازی انتخاب باندهای طیفی، رویکرد ترکیبی GA-SVR به‌کار گرفته شد؛ به‌طوری‌که الگوریتم ژنتیک (GA) برای شناسایی ترکیب بهینه باندهای طیفی و رگرسیون بردار پشتیبان (SVR) برای ساخت یک مدل پیش‌بینی قوی‌تر روی مجموعه ویژگی‌های بهینه‌شده اعمال شد. معیارهای ارزیابی R²، RMSE و میانگین خطای مطلق (MAE) برای سنجش و مقایسه اثربخشی هر یک از روش‌های مدل‌سازی استفاده شدند. به‌منظور ارزیابی قابلیت تعمیم‌پذیری، داده‌ها به دو بخش آموزشی (70%) و آزمایشی (30%) تقسیم شدند. علاوه بر این، برای اطمینان از استحکام مدل، از روش اعتبارسنجی متقابل بهره گرفته شد.

نتایج و بحث: تحلیل‌ها نشان داد که باندهای طیف مرئی در هر دو ماهواره لندست-8 و سنتینل-2 ارتباط معناداری با غلظت PM2.5 و PM10 دارند. مدل‌های رگرسیون خطی با استفاده از باندهای 1 و 2 لندست-8 و باندهای 2، 3 و 4 سنتینل-2 همبستگی قابل‌توجهی در داده‌های آموزشی ایجاد کردند. مقدار R² برای PM2.5 در لندست-8 به ترتیب در داده‌های آموزشی و آزمایشی %70.56 و %67.24 بود، در حالی که این مقدار در سنتینل-2 برای داده‌های آزمایشی به %68.89 رسید. مقادیر RMSE برای داده‌های آموزشی و آزمایشی لندست-8 به‌ترتیب 7.01 و 7.48 بود، در حالی که در سنتینل-2، مقادیر 6.93 و 7.32 ثبت شد که نشان‌دهنده عملکرد برتر سنتینل-2 است.

در مدل‌های رگرسیون غیرخطی، نتایج نشان داد که مدل‌های توانی مقادیر قابل‌توجهی از R² را ارائه می‌دهند. در این مدل‌ها، مقادیر NRMSE بین 0.066 تا 0.115 محاسبه شد که نسبت به مدل‌های خطی دقت بالاتری داشتند. اگرچه مدل‌های رگرسیون غیرخطی توانایی بیشتری در مدل‌سازی روابط پیچیده دارند، اما به دلیل بار محاسباتی بالا و افزایش محدود دقت، استفاده از مدل‌های خطی همراه با بهینه‌سازی مبتنی بر یادگیری ماشین، به عنوان رویکردی کارآمدتر توصیه می‌شود.



مدل GA-SVR بالاترین دقت را در پیش‌بینی‌ها داشت و نشان داد که طول‌موج‌های کوتاه‌تر بیشترین توانایی را در پیش‌بینی غلظت ذرات معلق دارند. با بهینه‌سازی انتخاب ویژگی‌ها، این مدل به R² نزدیک به %70 دست یافت. این نتایج حاکی از توان بالای مدل GA-SVR در بهبود دقت پیش‌بینی است.

نتیجه‌گیری: نتایج نشان داد که باندهای طیف مرئی در مدل‌های پیش‌بینی کیفیت هوا بیشترین تأثیر را دارند. مدل‌سازی با سنتینل-2 و استفاده از باندهای بهینه شناسایی‌شده توسط روش GA-SVR، بالاترین دقت را در پیش‌بینی PM2.5 به دست آورد. تحلیل مقایسه‌ای نشان داد درحالی‌که مدل‌های رگرسیون خطی عملکرد قابل قبولی دارند، ترکیب بهینه‌سازی ویژگی‌ها و یادگیری‌ماشین دقت پیش‌بینی را به‌طور قابل‌توجهی افزایش می‌دهد و اطلاعات ارزشمندی درباره باندهای طیفی مؤثر برای نظارت بر PM ارائه می‌کند. مدل GA-SVR با مقدار R² نزدیک به %70 نشان‌دهنده قابلیت مدل‌های بهینه شده برای نظارت دقیق و به‌موقع بر کیفیت هوا در مقیاس‌های مکانی مختلف است.

کلیدواژه‌ها


عنوان مقاله [English]

Air Quality Assessment by Monitoring PM10 and PM2.5 Parameters Using Multispectral Satellite Images

نویسندگان [English]

  • Seyed Mohammad Mozafari 1
  • Ramin Saadi 1
  • sima neyrizi 2
1 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
چکیده [English]

Background and Objectives: Air pollution, particularly particulate matter (PM2.5 and PM10), poses significant challenges in large urban areas, leading to severe impacts on public health, ecosystems, and overall quality of life. These issues are especially pronounced in densely populated cities such as Tehran, where air quality management is of utmost importance. Accurate monitoring and forecasting of air quality are essential for developing effective public health and policy strategies. However, the spatial limitations of ground-based air quality monitoring stations prevent comprehensive observation of air quality variations across the entire city. To address these limitations, this study utilized satellite imagery from Landsat-8 and Sentinel-2 to predict particulate matter concentrations, specifically PM2.5 and PM10. By combining spectral reflectance data with advanced machine learning methods, the research aims to identify efficient predictive models and determine the most influential spectral bands for estimating particulate matter concentrations.

Materials and Methods: The study began by developing linear regression models using single-band reflectance and multi-band combinations to establish relationships between spectral data and particulate matter concentrations. To capture more complex patterns, nonlinear regression models were also examined. For optimal feature selection, a hybrid Genetic Algorithm-Support Vector Regression (GA-SVR) method was implemented. The Genetic Algorithm (GA) identified the optimal spectral band combinations, while Support Vector Regression (SVR) constructed robust predictive models based on these optimized features. Key evaluation metrics, including the coefficient of determination (R²), root mean square error (RMSE), and mean absolute error (MAE), were used to assess and compare model performance. To ensure reliability and generalizability, data were divided into training (70%) and testing (30%) subsets, and cross-validation was applied to validate the models’ robustness.

Results and Discussion: The findings revealed that the visible spectrum bands of Landsat-8 and Sentinel-2 showed strong correlations with PM2.5 and PM10 concentrations. Linear regression models developed using bands 1 and 2 of Landsat-8 and bands 2, 3, and 4 of Sentinel-2 achieved significant correlations in the training datasets. For Landsat-8, the R² values for PM2.5 were 70.56% and 67.24% for training and testing datasets, respectively, while Sentinel-2 reached an R² of 68.89% for the testing dataset. The RMSE values for Landsat-8 were 7.01 and 7.48 for the training and testing datasets, respectively, while Sentinel-2 demonstrated superior performance with RMSE values of 6.93 and 7.32. These results highlight the effectiveness of Sentinel-2 imagery in predicting particulate matter concentrations.

In the nonlinear regression analysis, power models showed the highest R² values among the tested models. The normalized RMSE (NRMSE) values ranged between 0.066 and 0.115, demonstrating greater accuracy than linear models. Although nonlinear models proved more capable of capturing complex relationships, their high computational costs and only marginal accuracy improvements suggest that combining linear models with feature optimization is a more practical approach.

The GA-SVR model yielded the best prediction accuracy, showing that shorter wavelengths play a crucial role in estimating particulate matter concentrations. With optimized feature selection, this model achieved an R² close to 70%, underscoring the potential of GA-SVR as a powerful tool for enhancing prediction accuracy in air quality studies.

Conclusion: This study underscores the critical importance of visible spectrum bands in predicting air quality. Sentinel-2 imagery, when combined with the optimal spectral bands identified through the GA-SVR method, demonstrated superior accuracy in estimating PM2.5 concentrations. Linear regression models yielded reliable results; however, the integration of feature optimization and advanced machine learning methods significantly enhanced prediction performance. The GA-SVR model achieved remarkable accuracy, with R² values as high as 70.56%, underscoring the effectiveness of optimized models for precise and timely air quality monitoring across various spatial scales. These findings highlight the transformative potential of leveraging multispectral satellite imagery alongside machine learning techniques to address the complexities of urban air pollution, offering a robust framework for more informed environmental management and decision-making.

کلیدواژه‌ها [English]

  • : Air Pollution
  • Particulate Matter
  • Landsat-8
  • Sentinel-2
  • AOD