ارزیابی کارآیی همدوسی تداخل‌سنجی راداری به‌منظور تعیین نوع کشت اراضی کشاورزی با استفاده از یادگیری ماشین

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه سنجش ازدور و سیستم اطلاعات جغرافیایی، دانشکده علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

مقدمه: استفادۀ بهینه از زمین‌های کشاورزی یکی از دغدغه‌های مسئولان است زیرا کشاورزی ازنظر اشتغال‌زایی، ارزآوری، تأمین امنیت غذایی کشور و وابستگی کمتر به ارز خارجی دارای اهمیت بسیار است. به دست آوردن اطلاعات دربارۀ الگوی توزیع مکانی و سطح زیرکشت محصولات زراعی می‌تواند به استفادۀ کارآمد از آن‌ها کمک ‌کند. ازجملۀ روش‌های مناسب به‌منظور حصول اطلاعات درمورد سطح زیرکشت محصولات زراعی، بهره‌گیری از تصاویر ماهواره‌ای است. حوزۀ سنجش‌ از‌ دور، با امکان ارائۀ تصاویر دارای قدرت تفکیک‌های مناسب و همچنین پوشش مکانی و زمانی وسیع، به رویکردی غالب برای استخراج سطح زیرکشت و‌ پایش محصولات زراعی تبدیل شده است. یکی از داده‌های سنجش‌ازدوری که اخیراً در حوزۀ نقشه‌برداری نوع محصول زراعی مورد توجه قرار گرفته، تصاویر همدوسی تداخل‌سنجی رادار دریچۀ مصنوعی است که به‌دلیل حساسیت بالا به ساختار محصولات زراعی، به نظارت و نقشه‌برداری آن‌ها کمک بسیاری می‌کند. در منابع جهانی، تصاویر همدوسی  InSARکاربردی گسترده در تحقیقات مرتبط با محصولات زراعی داشته است. این درحالی است که در ایران، بهره‌گیری از داده‌های همدوسی برای پایش فنولوژی و تفکیک محصولات زراعی گوناگون، به‌ر‌غم توانایی‌های منحصربه‌فرد آن، چندان مورد توجه قرار نگرفته است. از‌این‌رو ارزیابی کارآیی داده‌های همدوسی و قابلیت‌های آن‌ها برای اتخاذ سیاست‌های مدیریت کشاورزی بهینه در ایران می‌تواند بسیار کارساز باشد.
روش‌شناسی: هدف اصلی مطالعۀ حاضر ارزیابی کارآیی داده‌های همدوسی مبتنی‌بر یادگیری ماشین، به‌منظور نقشه‌برداری نوع محصول زراعی است. بدین‌منظور سری زمانی یک‌ساله‌ای متعلق به سال زراعی 1398 (2019 میلادی)، از داده‌های همدوسی دارای اطلاعات فاز ماهوارۀ سنتینل‌ 1، درمورد بخشی از اراضی دشت اردبیل واقع در غرب و شمال‌غرب شهر اردبیل، تهیه شد. در ‌این راستا زنجیره‌ای از جفت تصاویر راداری، با خط‌مبناهای مکانی و زمانی کوتاه، برای تولید داده‌های همدوسی به کار رفت. داده‌های میدانی از 1358 قطعه‌زمین با محصولات متفاوت برداشت شد. در مرز قطعات زراعی، حریمی ده‌متری برای جلوگیری از پیکسل‌های مخلوط در نظر گرفته شد. درمجموع، 156026 پیکسل از تصاویر همدوسی، برای نمونه، برداشت و به‌صورت تصادفی به سه دستۀ آموزشی (70%)، اعتبارسنجی (15%) و آزمایشی (15%) تقسیم شد. به‌منظور انتخاب بازۀ زمانی مناسب برای استفاده از تصاویر همدوسی، پاسخ فنولوژیکی محصولات به همدوسی تحلیل شد. در بازۀ زمانی انتخابی، سیگنال‌های فنولوژیکی محصولات مورد بررسی، با سیگنا‌ل‌های مناطق شاهد ساخته‌شده و خاک لخت، مقایسه شد تا درمورد اختلاط نیافتن آن‌ها اطمینان به دست آید. بدین‌ترتیب داده‌های همدوسی چندزمانه در بازۀ انتخابی، به‌منزلۀ ورودی طبقه‌بندی‌کنندۀ ماشین بردار پشتیبان با کرنل‌های متفاوت، برای تفکیک و شناسایی نوع محصولات زراعی استفاده شدند.
نتایج: بررسی مقادیر سری زمانی همدوسی، در مناطق شاهد انتخابی، حاکی از تمایز رفتار همدوسی محصولات زراعی متفاوت، درمقایسه با هم و نیز درقیاس با مناطق ساخته‌شده و خاک لخت است. بر‌این‌اساس داده‌های همدوسی انطباق خوبی با مراحل فنولوژیکی اصلی محصولات زراعی نشان می‌دهند. از میان کرنل‌های گوناگون طبقه‌بندی‌کنندۀ ماشین بردار پشتیبان، کرنل تابع پایۀ شعاعی بیشترین میزان صحت کلی برابر را با 69/59%، با ترکیب متفاوتی از پارامترهای c و گاما در مرحلۀ اعتبارسنجی نشان داد. صحت کلی نقشۀ‌ نوع محصول زراعی تولید‌شده با استفاده از طبقه‌بندی‌کنندۀ ماشین بردار پشتیبان و کرنل تابع پایۀ شعاعی، در مرحلۀ آزمایش، برابر با 6/60% است که بهترین عملکرد را در شناسایی گندم و بدترین را درمورد یونجه داشته است. صحت کاربر، برای گیاهان گندم و سیب‌زمینی، بالاتر و برای گیاهان ذرت، باقلا و یونجه، پایین‌تر است.
جمع‌بندی: به‌طور کلی، می‌توان گفت تصاویر همدوسی اطلاعات ارزشمندی به‌منظور شناسایی و تفکیک محصولات زراعی در ایران ارائه می‌دهند. استفاده از قابلیت‌های یادگیری ماشین می‌تواند، در پایش و تفکیک انواع محصولات زراعی، به داده‌های همدوسی کمک کند. در این راستا، عواملی همچون تعداد نمونه‌های آموزشی هر محصول، تعداد ویژگی‌های همدوسی، استفاده از داده‌های مکمل، اختلاف‌منظر سنجنده (خط‌مبنای مکانی)، ویژگی‌های توپوگرافیکی (شیب و جهت)، فاصلۀ زمانی بین تصاویر رادار و نوع الگوریتم طبقه‌بندی تصویر، کارآیی تصاویر همدوسی و طبقه‌بندی‌کننده را تحت تأثیر قرار می‌دهند که باید مورد توجه قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the Efficiency of InSAR Coherence in Crop Type Mapping Using Machine Learning

نویسندگان [English]

  • Fatemeh Amiri
  • Ali Shamsoddini
  • Mohamad Sharifikia
Dep of Remote Sensing and GIS, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Introduction: The optimal use of agricultural land is a key concern for authorities due to agriculture's significant role in job creation, foreign exchange earnings, ensuring food security, and reducing reliance on imports. Gathering information about the spatial distribution and cultivated areas of various crops can enhance their efficient usage. One effective method for obtaining this information is through satellite imagery. Remote sensing technology, with its ability to provide high-resolution images and extensive spatial and temporal coverage, has become a dominant approach for crop type mapping. One of the remote sensing data that has recently received attention in the field of crop type mapping is the interferometric coherence images of synthetic aperture radar (InSAR). The sensitivity of these images to crop’s structure, making them valuable for monitoring and mapping crop types. In global literature, InSAR coherence images have been widely used in research related to agricultural products. However, in Iran, the use of coherence data for monitoring phenology and distinguishing different crops has not received much attention, despite its unique capabilities. Therefore, evaluating the efficiency of coherence data and its potential for adopting optimal agricultural management policies in Iran can be highly beneficial.
Methodology: The main objective of this study is to evaluate the efficiency of machine learning-based InSAR coherence data for crop type mapping. To achieve this, a one-year time series of Synthetic Aperture Radar (SAR) data was compiled from Sentinel-1 phase information for the 2019 crop year, for the Ardabil plain, located to the west and northwest of Ardabil city. A network of SAR image pairs with short spatial and temporal baselines was created to produce coherence data. Field data were collected from 1,358 fields containing various crops. To avoid mixed pixels, a 10-meter buffer was established around the edges of each crop field. A total of 156,026 pixels from the coherence images were sampled and randomly divided into three groups: training (70%), validation (15%), and test (15%). To select the appropriate time interval for using coherence images, the phenological response of the crops to the InSAR coherence was analyzed. During the time interval, the phenological signals of the studied crops were compared with the signals of the built-up areas and bare soil to ensure that they were not mixed. Consequently, the multi-temporal InSAR coherence values in the selected time interval were used as input to the Support Vector Machine (SVM) classifier with different kernels to distinguish and identify the type of crops.
Result: The study of the coherence time series values in the selected control areas revealed distinct differences in the coherence behavior of various crops when compared to one another, as well as in comparison to both built-up and bare soil areas. The InSAR coherence data match well with the main phenological stages of the crops. Among the different SVM kernels tested, the radial basis function (RBF) kernel achieved the highest overall accuracy of 59.69% during the validation phase, utilizing various combinations of the parameters c and gamma. In the testing phase, the crop type map produced using the SVM classifier with the RBF kernel reached an overall accuracy of 60.6%. This model performed best in identifying wheat and least effectively in identifying alfalfa. User accuracy was notably higher for wheat and potato plants, while it was lower for corn, broad bean, and alfalfa.
Conclusion: Coherence images offer valuable insights for identifying and classifying crops in Iran. Leveraging machine learning techniques can enhance the utility of coherence data in monitoring and categorizing different crop types. Several factors influence the effectiveness of coherence images and the performance of classification algorithms, including the number of training samples available for each crop, the number of coherence features, the use of complementary data, sensor parallax (spatial baseline), topographical features (slope and aspect), the temporal resolution, and the classification algorithm. These characteristics should be carefully considered to optimize the analysis.

کلیدواژه‌ها [English]

  • Keywords: Crop type mapping
  • Support vector machine (SVM)
  • Interferometric synthetic aperture radar (InSAR)
  • Coherence
  • Sentinel-1
Abiyat, M., Abiyat, M. & Abiyat, M., 2022, Evaluation of Efficiency between Classification Methods and Spectral Indices in Cropped Area Estimation of Shush County, Water and Soil, 36(4), PP. 493-509, https://doi.org/10.22067/jsw.2022. 76746.1167 (Persian).
Akbary, N., Sameti, M. & Hadyan, V., 2003, The Impact of Public Expenditures on Agriculture Value Added, Eqtesad-e Keshavarzi va Towse'e, 11(1-2), PP. 137-166, https://sid.ir/paper/24163/fa (Persian).
Alizadeh, P., Kamkar, B., Shataee, S. & Kazemi Posht Masari, H., 2018, Estimation of Changes in Land Area under Wheat and Soybean Cultivation Using Satellite Images Classification Techniques in West of Golestan Province, Applied Field Crops Research, 31(3), PP. 41-61, https://doi.org/ 10.22092/aj.2018.121231.1268 (Persian).
Amherdt, S., Di Leo, N.C., Pereira, A., Cornero, C. & Pacino, M.C., 2022, Assessment of Interferometric Coherence Contribution to Corn and Soybean Mapping with Sentinel-1 Data Time Series, Geocarto International, 28(1), PP. 1-22, https:// doi.org/10.1080/10106049.2022.2144472.
Asadi, B. & Shamsoddini, A., 2024a, Crop Mapping through a Hybrid Machine Learning and Deep Learning Method, Remote Sensing Applications: Society and Environment, 33, P. 101090, https://doi.org/10.1016/j.rsase.2023.101090.
Asadi, B. & Shamsoddini, A., 2024b, Crop Mapping Using a Combination of Sentinel-1 and 2 Images in Ardabil Province, Iranian Journal of Remote Sensing and GIS, 16(3), PP. 25-46, https://doi.org/10.48308/gisj. 2023. 103095 (Persian).
 
Azzari, G. & Lobell, D.B., 2017, Landsat-Based Classification in the Cloud: An Opportunity for a Paradigm Shift in Land Cover Monitoring, Remote Sensing of Environment, Big Remotely Sensed Data: Tools, Applications and Experiences, 202, PP. 64-74, https://doi.org/10.1016/j.rse. 2017.05.025.
Busquier, M., Lopez-Sanchez, J.M., Mestre-Quereda, A., Navarro, E., González-Dugo, M.P. & Mateos, L., 2020, Exploring TanDEM-X Interferometric Products for Crop-Type Mapping, Remote Sensing, 12(11), P. 1774.
Crosetto, M., Tscherning, C.C., Crippa, B. & Castillo, M., 2002, Subsidence Monitoring Using SAR Interferometry: Reduction of the Atmospheric Effects Using Stochastic Filtering, Geophysical Research Letters, 29(9), PP. 26-29, https://doi.org/10.1029/ 2001GL013544.
Ebrahimzadeh, S., Soleimani, M., Atarchi, S., Saadat Novin, M. & Shabanian, H., 2023, Detection of Areas with Severely Eroded Soils Using Sentinel-1 Interferometric SAR Coherence (Study Area: Khuzestan Province), jgit, 11(3), PP. 59-84, http:// dx.doi.org/10.61186/jgit.11.3.59 (Persian).
Engdahl, M.E. & Hyyppa, J.M., 2003, Land-Cover Classification Using Multitemporal ERS-1/2 InSAR Data, IEEE Transactions on Geoscience and Remote Sensing, 41(7), PP. 1620-1628.
Engdahl, M.E., Borgeaud, M. & Rast, M., 2001, The Use of ERS-1/2 Tandem Interferometric Coherence in the Estimation of Agricultural Crop Heights, IEEE Transactions on Geoscience and Remote Sensing, 39(8), PP. 1799-1806, https://doi.org/10.1109/36.942558.
Khalil, R.Z., 2018, InSAR Coherence-Based Land Cover Classification of Okara, Pakistan, The Egyptian Journal of Remote Sensing and Space Science, 21, PP. S23-S28.
Ezzati, H., Pourbayramian, S. & Sarvoghamet, M., 2017, The Effect of Yamchi Dam on Increasing the Groundwater Level of the Ardabil Plain Aquifer, 10th National Geology Conference of Payam Noor University, https://civilica.com/doc/621832 (Persian).
Forudikhor, A., Sanei, M. & Ajdari Moghadam, M., 2010, Comparison of Adaptive Neural Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM) in Estimating Discharge Coefficient of Sharp-Edged Spillways, Iranian Journal of Irrigation and Drainage, 11(5), PP. 772-784, https:// civilica.com/doc/1210864 (Persian).
Fu, Y., Shen, R., Song, C., Dong, J., Han, W., Ye, T. & Yuan, W., 2023, Exploring the Effects of Training Samples on the Accuracy of Crop Mapping with Machine Learning Algorithm, Science of Remote Sensing, 7, P. 100081, https://doi.org/ 10.1016/j.srs.2023.100081.
Holzer, T.L. & Galloway, D.L., 2005, Impacts of Land Subsidence Caused by Withdrawal of Underground Fluids in the United States, Publication of an Organization other than USGS, Geological Society of America, https://doi.org/10.1130/2005.4016(08).
Huang, J., Ma, H., Sedano, F., Lewis, P., Liang, S., Wu, Q., ... & Zhu, D., 2019, Evaluation of Regional Estimates of Winter Wheat Yield by Assimilating Three Remotely Sensed Reflectance Datasets into the Coupled WOFOST–PROSAIL Model, European Journal of Agronomy, 102, PP. 1-13.
Huber, M., Kumar, V., Steele-Dunne, S.C. & Rommen, B., 2023, Sentinel-1 InSAR Coherence as an Indicator of Monitor Farming Activities, IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium (PP. 429-432), IEEE, https://doi.org/10.1109/IGARSS52108.2023.10281522.
Jacob, A.W., Vicente-Guijalba, F., Lopez-Martinez, C., Lopez-Sanchez, J.M., Litzinger, M., Kristen, H., ... & Engdahl, M.E., 2020, Sentinel-1 InSAR Coherence for Land Cover Mapping: A Comparison of Multiple Feature-Based Classifiers, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, PP. 535-552, https://doi.org/10.1109/ JSTARS.2019.2958847.
Jamali, A., 2020, Sentinel-1 Image Classification Using Machine Learning Algorithms Based on the Support Vector Machine and Random Forest, Int. J. Geoinformatics, 16(2).
Jensen, J.R., 1996, Introductory Digital Image Processing: A Remote Sensing Perspective, (No. Ed. 2), Prentice-Hall Inc.
Kavzoglu, T. & Colkesen, I., 2009, A Kernel Functions Analysis for Support Vector Machines for Land Cover Classification, International Journal of Applied Earth Observation and Geoinformation, 11(5), PP. 352-359, https://doi.org/10.1016/j.jag.2009.06.002.
Khosravi, I., 2024, Crop Mapping from Landsat-8 Images Time Series Using Machine-Learning Methods (Case Study: Marvdasht in Fars Province), Geography and Environmental Planning, 35(2), PP. 45-66, https://doi.org/10.22108/gep.2024.138615. 1601 . (Persian).
Li, G., Cui, J., Han, W., Zhang, H., Huang, S., Chen, H. & Ao, J., 2022, Crop Type Mapping Using Time-Series Sentinel-2 Imagery and U-Net in Early Growth Periods in the Hetao Irrigation District in China, Computers and Electronics in Agriculture, 203, P. 107478, https://doi.org/ 10.1016/j.compag.2022.107478.
Lin, S.W., Ying, K.C., Chen, S.C. & Lee, Z.J., 2008, Particle swarm optimization for parameter determination and feature selection of support vector machines, Expert Systems with Applications, 35(4), PP. 1817-1824, http://dx.doi.org/10.1016/ j.eswa.2007.08.088.
Liu, X., Xie, S., Yang, J., Sun, L., Liu, L., Zhang, Q. & Yang, C., 2023, Comparisons between Temporal Statistical Metrics, Time Series Stacks and Phenological Features Derived from NASA Harmonized Landsat Sentinel-2 Data for Crop Type Mapping, Computers and Electronics in Agriculture, 211, P. 108015, http://dx.doi.org/10.1016/j.compag.2023.108015.
Mestre-Quereda, A., Lopez-Sanchez, J.M., Vicente-Guijalba, F., Jacob, A.W. & Engdahl, M.E., 2020, Time-Series of Sentinel-1 Interferometric Coherence and Backscatter for Crop-Type Mapping, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, PP. 4070-4084, http://dx.doi.org/ 10.1109/JSTARS.2020.3008096.
Meteorological Yearbook of Ardabil Province, 2021, Ardabil Province Meteorological Organization (Persian).
Nasirzadehdizaji, R., Cakir, Z., Sanli, F.B., Abdikan, S., Pepe, A. & Calo, F., 2021, Sentinel-1 Interferometric Coherence and Backscattering Analysis for Crop Monitoring, Computers and Electronics in Agriculture, 185, P. 106118, https://doi.org/ 10.1016/j.compag.2021.106118.
Navale, A. & Haldar, D., 2019, Evaluation of Machine Learning Algorithms to Sentinel SAR Data, Spat. Inf. Res., PP. 1-11, http://dx.doi.org/10.21203/rs.3.rs-4011867/v1.
Olesk, A., Praks, J., Antropov, O., Zalite, K., Arumäe, T. & Voormansik, K., 2016, Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data, Remote Sensing, 8(9), P. 700.
Pandit, A., Sawant, S., Mohite, J. & Pappula, S., 2021, Sentinel-1-Derived Coherence Time-Series for Crop Monitoring in Indian Agriculture Region, Geocarto International, 37(25), PP. 9497-9517, https:// doi.org/10.1080/10106049.2021.2022008.
Parihar, N., Das, A., Rathore, V.S., Nathawat, M.S. & Mohan, S., 2014, Analysis of L-Band SAR Backscatter and Coherence for Delineation of Land-Use/Land-Cover, International Journal of Remote Sensing, 35(18), PP. 6781-6798, https://doi.org/ 10.1080/01431161.2014.965282.
Ren, F., Li, Y. & Hu, M., 2018, Multi-Classifier Ensemble Based on Dynamic Weights, Multimedia Tools and Applications, 77(16), PP. 21083-21107, https://doi.org/10.1007/ s11042-017-5480-5.
Senanayake, S., Biswajeet, P., Alfredo, H. & Jane, B., 2020, A Review on Assessing and Mapping Soil Erosion Hazard Using Geo-Informatics Technology for Farming System Management, Remote Sensing, 12(24), P. 4063, https://doi.org/10.3390/ rs12244063.
Sica, F., Pulella, A., Nannini, M., Pinheiro, M. & Rizzoli, P., 2019, Repeat-Pass SAR Interferometry for Land Cover Classification: A Methodology Using Sentinel-1 Short-Time-Series, Remote Sensing of Environment, 232, P. 111277.
Soleimani, M., Attarchi, S., Mahmoody-Vanolya, N., Bakhshizadeh, F. & Ahmadi, H., 2021, Evaluation of Sentinel-1 Interferometric SAR Coherence Efficiency for Land Cover Mapping, jgit., 9(3), PP. 85-107, http://dx.doi.org/ 10.52547/jgit.9.3.85 (Persian).
Sonobe, R., Tani, H., Wang, X., Kobayashi, N. & Shimamura, H., 2015, Discrimination of Crop Types with TerraSAR-X-Derived Information, Physics and Chemistry of the Earth, Parts A/B/C, 83, PP. 2-13.
Stehman, S.V., Arora, M.K., Kasetkasem, T. & Varshney, P.K., 2007, Estimation of Fuzzy Error Matrix Accuracy Measures under Stratified Random Sampling, Photogrammetric Engineering & Remote Sensing, 73(2), PP. 165-173, http://dx.doi.org/ 10.14358/PERS.73.2.165.
Syarif, I., Prugel-Bennett, A. & Wills, G., 2016, SVM parameter optimization using grid search and genetic algorithm to improve classification performance, TELKOMNIKA (Telecommunication Computing Electronics and Control), 14(4), PP. 1502-1509, http:// dx.doi.org/10.12928/telkomnika.v14i4.3956.
Touzi, R., Lopes, A., Bruniquel, J. & Vachon, P.W., 1999, Coherence Estimation for SAR Imagery, IEEE Transactions on Geoscience and Remote Sensing, 37(1), PP. 135-149, https://doi.org/10.1109/36.739146.
Vapnik, V.N., 1995, The Nature of Statistical L Earning T Heory, New York: Springer2V Erlag, http://dx.doi.org/10.1007/978-1-4757-2440-0.
Villarroya-Carpio, A., Lopez-Sanchez, J.M. & Engdahl, M.E., 2022, Sentinel-1 Interferometric Coherence as a Vegetation Index for Agriculture, Remote Sensing of Environment, 280, P. 113208, https://doi.org/10.1016/j.rse.2022.113208.
Yang, N., Liu, D., Feng, Q., Xiong, Q., Zhang, L., Ren, T., ... & Huang, J., 2019, Large-Scale Crop Mapping Based on Machine Learning and Parallel Computation with Grids, Remote Sensing, 11(12), P. 1500.
Zhao, Q., Xie, Q., Peng, X., Bao, Y., Jia, T., Yue, L., ... & Zhu, J., 2024, A Comparison of Sentinel-1 Biased and Unbiased Coherence for Crop Monitoring and Classification, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, PP. 903-908, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-903-2024.
Zhou, T., Pan, J., Zhang, P., Wei, S. & Han, T., 2017, Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region, Sensors, 17(6), P. 1210, https://doi.org/ 10.3390/s17061210.
Zhu, G. & Blumberg, D.G., 2002, Classification Using ASTER Data and SVM Algorithms: The Case Study of Beer Sheva, Israel, Remote Sensing of Environment, 80(2), PP. 233-240, http://dx.doi.org/ 10.1016/S0034-4257(01)00305-4.