Abiyat, M., Abiyat, M. & Abiyat, M., 2022,
Evaluation of Efficiency between Classification Methods and Spectral Indices in Cropped Area Estimation of Shush County, Water and Soil, 36(4), PP. 493-509,
https://doi.org/10.22067/jsw.2022. 76746.1167 (Persian).
Akbary, N., Sameti, M. & Hadyan, V., 2003,
The Impact of Public Expenditures on Agriculture Value Added, Eqtesad-e Keshavarzi va Towse'e, 11(1-2), PP. 137-166,
https://sid.ir/paper/24163/fa (Persian).
Alizadeh, P., Kamkar, B., Shataee, S. & Kazemi Posht Masari, H., 2018,
Estimation of Changes in Land Area under Wheat and Soybean Cultivation Using Satellite Images Classification Techniques in West of Golestan Province, Applied Field Crops Research, 31(3), PP. 41-61,
https://doi.org/ 10.22092/aj.2018.121231.1268 (Persian).
Amherdt, S., Di Leo, N.C., Pereira, A., Cornero, C. & Pacino, M.C., 2022,
Assessment of Interferometric Coherence Contribution to Corn and Soybean Mapping with Sentinel-1 Data Time Series, Geocarto International, 28(1), PP. 1-22,
https:// doi.org/10.1080/10106049.2022.2144472.
Asadi, B. & Shamsoddini, A., 2024a,
Crop Mapping through a Hybrid Machine Learning and Deep Learning Method, Remote Sensing Applications: Society and Environment, 33, P. 101090,
https://doi.org/10.1016/j.rsase.2023.101090.
Asadi, B. & Shamsoddini, A., 2024b,
Crop Mapping Using a Combination of Sentinel-1 and 2 Images in Ardabil Province, Iranian Journal of Remote Sensing and GIS, 16(3), PP. 25-46,
https://doi.org/10.48308/gisj. 2023. 103095 (Persian).
Azzari, G. & Lobell, D.B., 2017,
Landsat-Based Classification in the Cloud: An Opportunity for a Paradigm Shift in Land Cover Monitoring, Remote Sensing of Environment, Big Remotely Sensed Data: Tools, Applications and Experiences, 202, PP. 64-74,
https://doi.org/10.1016/j.rse. 2017.05.025.
Busquier, M., Lopez-Sanchez, J.M., Mestre-Quereda, A., Navarro, E., González-Dugo, M.P. & Mateos, L., 2020, Exploring TanDEM-X Interferometric Products for Crop-Type Mapping, Remote Sensing, 12(11), P. 1774.
Crosetto, M., Tscherning, C.C., Crippa, B. & Castillo, M., 2002,
Subsidence Monitoring Using SAR Interferometry: Reduction of the Atmospheric Effects Using Stochastic Filtering, Geophysical Research Letters, 29(9), PP. 26-29,
https://doi.org/10.1029/ 2001GL013544.
Ebrahimzadeh, S., Soleimani, M., Atarchi, S., Saadat Novin, M. & Shabanian, H., 2023,
Detection of Areas with Severely Eroded Soils Using Sentinel-1 Interferometric SAR Coherence (Study Area: Khuzestan Province), jgit, 11(3), PP. 59-84,
http:// dx.doi.org/10.61186/jgit.11.3.59 (Persian).
Engdahl, M.E. & Hyyppa, J.M., 2003, Land-Cover Classification Using Multitemporal ERS-1/2 InSAR Data, IEEE Transactions on Geoscience and Remote Sensing, 41(7), PP. 1620-1628.
Engdahl, M.E., Borgeaud, M. & Rast, M., 2001,
The Use of ERS-1/2 Tandem Interferometric Coherence in the Estimation of Agricultural Crop Heights, IEEE Transactions on Geoscience and Remote Sensing, 39(8), PP. 1799-1806,
https://doi.org/10.1109/36.942558.
Khalil, R.Z., 2018, InSAR Coherence-Based Land Cover Classification of Okara, Pakistan, The Egyptian Journal of Remote Sensing and Space Science, 21, PP. S23-S28.
Ezzati, H., Pourbayramian, S. & Sarvoghamet, M., 2017,
The Effect of Yamchi Dam on Increasing the Groundwater Level of the Ardabil Plain Aquifer, 10th National Geology Conference of Payam Noor University,
https://civilica.com/doc/621832 (Persian).
Forudikhor, A., Sanei, M. & Ajdari Moghadam, M., 2010,
Comparison of Adaptive Neural Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM) in Estimating Discharge Coefficient of Sharp-Edged Spillways, Iranian Journal of Irrigation and Drainage, 11(5), PP. 772-784,
https:// civilica.com/doc/1210864 (Persian).
Fu, Y., Shen, R., Song, C., Dong, J., Han, W., Ye, T. & Yuan, W., 2023,
Exploring the Effects of Training Samples on the Accuracy of Crop Mapping with Machine Learning Algorithm, Science of Remote Sensing, 7, P. 100081,
https://doi.org/ 10.1016/j.srs.2023.100081.
Holzer, T.L. & Galloway, D.L., 2005,
Impacts of Land Subsidence Caused by Withdrawal of Underground Fluids in the United States, Publication of an Organization other than USGS, Geological Society of America,
https://doi.org/10.1130/2005.4016(08).
Huang, J., Ma, H., Sedano, F., Lewis, P., Liang, S., Wu, Q., ... & Zhu, D., 2019, Evaluation of Regional Estimates of Winter Wheat Yield by Assimilating Three Remotely Sensed Reflectance Datasets into the Coupled WOFOST–PROSAIL Model, European Journal of Agronomy, 102, PP. 1-13.
Huber, M., Kumar, V., Steele-Dunne, S.C. & Rommen, B., 2023,
Sentinel-1 InSAR Coherence as an Indicator of Monitor Farming Activities, IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium (PP. 429-432), IEEE,
https://doi.org/10.1109/IGARSS52108.2023.10281522.
Jacob, A.W., Vicente-Guijalba, F., Lopez-Martinez, C., Lopez-Sanchez, J.M., Litzinger, M., Kristen, H., ... & Engdahl, M.E., 2020,
Sentinel-1 InSAR Coherence for Land Cover Mapping: A Comparison of Multiple Feature-Based Classifiers, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, PP. 535-552,
https://doi.org/10.1109/ JSTARS.2019.2958847.
Jamali, A., 2020, Sentinel-1 Image Classification Using Machine Learning Algorithms Based on the Support Vector Machine and Random Forest, Int. J. Geoinformatics, 16(2).
Jensen, J.R., 1996, Introductory Digital Image Processing: A Remote Sensing Perspective, (No. Ed. 2), Prentice-Hall Inc.
Kavzoglu, T. & Colkesen, I., 2009,
A Kernel Functions Analysis for Support Vector Machines for Land Cover Classification, International Journal of Applied Earth Observation and Geoinformation, 11(5), PP. 352-359,
https://doi.org/10.1016/j.jag.2009.06.002.
Khosravi, I., 2024,
Crop Mapping from Landsat-8 Images Time Series Using Machine-Learning Methods (Case Study: Marvdasht in Fars Province), Geography and Environmental Planning, 35(2), PP. 45-66,
https://doi.org/10.22108/gep.2024.138615. 1601 . (Persian).
Li, G., Cui, J., Han, W., Zhang, H., Huang, S., Chen, H. & Ao, J., 2022,
Crop Type Mapping Using Time-Series Sentinel-2 Imagery and U-Net in Early Growth Periods in the Hetao Irrigation District in China, Computers and Electronics in Agriculture, 203, P. 107478,
https://doi.org/ 10.1016/j.compag.2022.107478.
Lin, S.W., Ying, K.C., Chen, S.C. & Lee, Z.J., 2008,
Particle swarm optimization for parameter determination and feature selection of support vector machines, Expert Systems with Applications, 35(4), PP. 1817-1824,
http://dx.doi.org/10.1016/ j.eswa.2007.08.088.
Liu, X., Xie, S., Yang, J., Sun, L., Liu, L., Zhang, Q. & Yang, C., 2023,
Comparisons between Temporal Statistical Metrics, Time Series Stacks and Phenological Features Derived from NASA Harmonized Landsat Sentinel-2 Data for Crop Type Mapping, Computers and Electronics in Agriculture, 211, P. 108015,
http://dx.doi.org/10.1016/j.compag.2023.108015.
Mestre-Quereda, A., Lopez-Sanchez, J.M., Vicente-Guijalba, F., Jacob, A.W. & Engdahl, M.E., 2020,
Time-Series of Sentinel-1 Interferometric Coherence and Backscatter for Crop-Type Mapping, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, PP. 4070-4084,
http://dx.doi.org/ 10.1109/JSTARS.2020.3008096.
Meteorological Yearbook of Ardabil Province, 2021, Ardabil Province Meteorological Organization (Persian).
Nasirzadehdizaji, R., Cakir, Z., Sanli, F.B., Abdikan, S., Pepe, A. & Calo, F., 2021,
Sentinel-1 Interferometric Coherence and Backscattering Analysis for Crop Monitoring, Computers and Electronics in Agriculture, 185, P. 106118,
https://doi.org/ 10.1016/j.compag.2021.106118.
Olesk, A., Praks, J., Antropov, O., Zalite, K., Arumäe, T. & Voormansik, K., 2016, Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data, Remote Sensing, 8(9), P. 700.
Pandit, A., Sawant, S., Mohite, J. & Pappula, S., 2021,
Sentinel-1-Derived Coherence Time-Series for Crop Monitoring in Indian Agriculture Region, Geocarto International, 37(25), PP. 9497-9517,
https:// doi.org/10.1080/10106049.2021.2022008.
Parihar, N., Das, A., Rathore, V.S., Nathawat, M.S. & Mohan, S., 2014, Analysis of L-Band SAR Backscatter and Coherence for Delineation of Land-Use/Land-Cover, International Journal of Remote Sensing, 35(18), PP. 6781-6798, https://doi.org/ 10.1080/01431161.2014.965282.
Ren, F., Li, Y. & Hu, M., 2018,
Multi-Classifier Ensemble Based on Dynamic Weights, Multimedia Tools and Applications, 77(16), PP. 21083-21107,
https://doi.org/10.1007/ s11042-017-5480-5.
Senanayake, S., Biswajeet, P., Alfredo, H. & Jane, B., 2020,
A Review on Assessing and Mapping Soil Erosion Hazard Using Geo-Informatics Technology for Farming System Management, Remote Sensing, 12(24), P. 4063,
https://doi.org/10.3390/ rs12244063.
Sica, F., Pulella, A., Nannini, M., Pinheiro, M. & Rizzoli, P., 2019, Repeat-Pass SAR Interferometry for Land Cover Classification: A Methodology Using Sentinel-1 Short-Time-Series, Remote Sensing of Environment, 232, P. 111277.
Soleimani, M., Attarchi, S., Mahmoody-Vanolya, N., Bakhshizadeh, F. & Ahmadi, H., 2021,
Evaluation of Sentinel-1 Interferometric SAR Coherence Efficiency for Land Cover Mapping, jgit., 9(3), PP. 85-107,
http://dx.doi.org/ 10.52547/jgit.9.3.85 (Persian).
Sonobe, R., Tani, H., Wang, X., Kobayashi, N. & Shimamura, H., 2015, Discrimination of Crop Types with TerraSAR-X-Derived Information, Physics and Chemistry of the Earth, Parts A/B/C, 83, PP. 2-13.
Stehman, S.V., Arora, M.K., Kasetkasem, T. & Varshney, P.K., 2007,
Estimation of Fuzzy Error Matrix Accuracy Measures under Stratified Random Sampling, Photogrammetric Engineering & Remote Sensing, 73(2), PP. 165-173,
http://dx.doi.org/ 10.14358/PERS.73.2.165.
Syarif, I., Prugel-Bennett, A. & Wills, G., 2016,
SVM parameter optimization using grid search and genetic algorithm to improve classification performance, TELKOMNIKA (Telecommunication Computing Electronics and Control), 14(4), PP. 1502-1509,
http:// dx.doi.org/10.12928/telkomnika.v14i4.3956.
Touzi, R., Lopes, A., Bruniquel, J. & Vachon, P.W., 1999,
Coherence Estimation for SAR Imagery, IEEE Transactions on Geoscience and Remote Sensing, 37(1), PP. 135-149,
https://doi.org/10.1109/36.739146.
Villarroya-Carpio, A., Lopez-Sanchez, J.M. & Engdahl, M.E., 2022,
Sentinel-1 Interferometric Coherence as a Vegetation Index for Agriculture, Remote Sensing of Environment, 280, P. 113208,
https://doi.org/10.1016/j.rse.2022.113208.
Yang, N., Liu, D., Feng, Q., Xiong, Q., Zhang, L., Ren, T., ... & Huang, J., 2019, Large-Scale Crop Mapping Based on Machine Learning and Parallel Computation with Grids, Remote Sensing, 11(12), P. 1500.
Zhao, Q., Xie, Q., Peng, X., Bao, Y., Jia, T., Yue, L., ... & Zhu, J., 2024,
A Comparison of Sentinel-1 Biased and Unbiased Coherence for Crop Monitoring and Classification, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, PP. 903-908,
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-903-2024.
Zhou, T., Pan, J., Zhang, P., Wei, S. & Han, T., 2017,
Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region, Sensors, 17(6), P. 1210,
https://doi.org/ 10.3390/s17061210.