نوع مقاله : علمی - پژوهشی

نویسندگان

1 استاد مرکز مطالعات سنجش از دور و GIS، دانشکدة علوم زمین، دانشگاه شهید بهشتی

2 دانشیار گروه GIS، دانشکدة نقشه‌برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 دانشجوی دکتری GIS، دانشکدة نقشه‌برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی

4 کارشناس ارشد سنجش از دور و GIS، مرکز مطالعات سنجش از دور و GIS، دانشگاه شهید بهشتی

چکیده

متناسب با پیچیدگی‌های رفتاری در انسان‌ها، سیستم‌های اجتماعی نیز دارای پیچیدگی خاصی‌اند. مدیریت جمعیت در این سیستم‌ها بسیار اهمیت دارد و نیازمند صرف هزینه و انرژی بسیار است. با توجه به تعاملات موجود میان انسان‌ها و محیط در سیستم‌های اجتماعی و تأثیر آنها در روند حرکتی جمعیت در شرایط متفاوت، شناخت و بررسی این تعاملات به‌ویژه در شرایط اضطراری، از نیازهای اساسی هر سیستم است. در پژوهش حاضر، از نتایج شبیه‌سازی مکانی عامل مبنای روند حرکتی افراد و شبیه‌سازی آتش‌سوزی در ایستگاه قطار شهری هفتِ تیر جهت بررسی رفتار افراد و محیط در هنگام آتش‌سوزی استفاده شد. سپس شاخص‌های دشواری حرکت، شامل شاخص‌های محیطی و محیطی‌- انسانی، به‌منظور بررسی تأثیر محیط و عامل‌ها در روند حرکتی، محاسبه شد. در ادامة کار دو شاخص دشواری جدید، شامل یک شاخص محیطی و یک شاخص محیطی‌- انسانی با نام‌های AM1 و AM2 ویژة شرایط آتش‌سوزی، معرفی شدند. نوآوری شاخص‌های یادشده، افزون بر میزان تعاملات افراد با یکدیگر و تعاملات آنها با اجزای فیزیکی محیط، به تلفیق نتایج شبیه‌سازی‌های عامل مبنا و شبیه‌سازی‌های مربوط به آتش‌سوزی در محیط و استفاده از پارامتری به نام میزان قابلیت دید مربوط می‌شود. بررسی نتایج شاخص‌های محاسبه‌شده و نتایج مربوط به شبیه‌سازی روند حرکتی افراد در محیط ایستگاه نمایانگر رابطة معکوس بین میزان دشواری و سرعت روند حرکتی عامل‌ها در محیط ایستگاه است. همچنین، میزان دشواری حرکت در سناریوی موفق محیطی نشان از کاهش میزان دشواری، در مقایسه با سناریوی وضعیت فعلی در نقاط داغ دارد. بهره‌‌گیری از شبیه‌سازی‌های عامل مبنا و محاسبة شاخص‌های دشواری در بازه‌های زمانی متفاوت وقوع بحران می‌تواند در تدوین استراتژی‌های مکانی- زمانی مدیریت جمعیت و تخلیة اضطراری مؤثر باشد و در نقش پشتیبانی‌کنندة تصمیم مکانی، مدیران بحران را در مدیریت بهینة شرایط یاری کند. 

کلیدواژه‌ها

عنوان مقاله [English]

Provide New Discomfort Indices at Fire Time Using Results of Agent-Based Geosimulation (Case Study: Hafte-Tir Subway Station)

نویسندگان [English]

  • , A.A Matkan 1
  • , A. Alimohammadi 2
  • , B Mirbagheri 3
  • , K Akbari 4
  • , M Tanasan 4

1 Prof. in Remote Sensing & GIS Research Center, Shahid Beheshti University

2 Assistant prof., Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology

3 P.Hd. Student of GIS, Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology

4 M.Sc. of Remote Sensing And GIS, Remote Sensing & GIS Research Center, Shahid Beheshti University

چکیده [English]

Commensurate with the complexity of human behavior, social systems are complicated. Population management in these systems are crucial and need to spend too much cost. Because of the interaction between humans and the environment and then the impact of these interactions on social systems in the process of population movements, there is a need to identify and study these interactions, especially in emergency situations.In this study, the results of agent based geosimulation of pedestrian movements and fire simulation at Hafte-Tir subway station were used to investigate the behavior of individuals and the environment during fire. Then, the discomfort indices, including environmental and human-environmental indicators, were calculated to examine the effect of the environment and agents on the movement process. This research has introduced two new discomfort indices i.e. environmental index AM1 and environmental-humanity index AM2 to evaluate the behavior of individuals and the environment during the fire. The innovation of these indices relates to the integration of the results of the agent based simulation and the fire simulation in the environment and after that using of visibility, in addition to the interactions of individuals with each other and their interactions with the physical components of the environment.  Calculating results of indices and the results of people movement’s simulation in the station represented an inverse relationship between the level of discomfort and speed of crowd in the station. Also, the discomfort induces in the successful environmental scenario shows a reduction in the discomfort in hot spots rather than current situation scenario. The use of agent based geosimulations and the result of discomfort indices in different periods of crisis, can contribute population management strategies and emergency evacuation.

کلیدواژه‌ها [English]

  • Agent-Based
  • Geosimulation
  • Fire
  • Emergency
  • Discomfort Index
  1. تسهیلات پیاده‌روی (جلد 1) مبانی فنی، نشریه 1-144، سازمان برنامه و بودجه، سال 1375.
  2. حاجی‌بابایی، ل.، دلاور، م.، ملک، م.، فرانک، ا.، 1386، شبیه‌سازی عامل مبنا در سیستم‌های اطلاعات مکانی (مطالعة موردی: راهیابی در محیط بیمارستان)، همایش ژئوماتیک 86، سازمان نقشه‌برداری کشور.
  3. مایار، م.، حیدری‌نژاد، ق.، پاسدار شهری، ه.، زرگر طالبی، ح.، 1392، شبیه‌سازی رفتار حریق در آتش‌سوزی تونل‌های جاده‌ای و بررسی پارامترهای مهم روی سرعت تهویة بحرانی، پانزدهمین کنفرانس دینامیک شاره‌ها (سیالات)، انجمن فیزیک ایران.
  4. Banks, J., 1998. Handbook of Simulation, Wiley Online Library.
  5. Basak, B. & Gupta, S., 2017, Developing an Agent-Based Model for Pilgrim Evacuation Using Visual Intelligence: A Case Study of Ratha Yatra at Puri, Computers, Environment and Urban Systems, 64, PP. 118-131.
  6. Busogi, M., Shin, D., Ryu, H., Oh, Y.G. & Kim, N., 2017, Weighted Affordance-Based Agent Modeling and Simulation in Emergency Evacuation, Safety Science, 96, PP. 209-227.
  7. Chandra, S. & Bharti, A.K., 2013, Speed Distribution Curves for Pedestrians During Walking and Crossing, Procedia-Social and Behavioral Sciences, 104, PP. 660-667.
  8. Conte, R., Hegselmann, R. & Terna, P., 1997, Simulating Social Phenomena, Lecture notes in Economics and Mathematical Systems.
  9. Crooks, A., Castle, C. & Batty, M., 2008, Key Challenges in Agent-Based Modelling for Geo-Spatial Simulation, Computers, Environment and Urban Systems, 32, PP. 417-430.
  10. Daamen, W., 2004, Modelling Passenger Flows in Public Transport Facilities, DUP Science Delft, the Netherlands.
  11. De Smith, M.J., Goodchild, M.F. & Longley, P., 2007, Geospatial Analysis: a Comprehensive Guide to Principles, Techniques and Software Tools, Troubador Publishing Ltd.
  12. Fishwick, P.A., 1995, Simulation Model Design and Execution: buiLDing Digital Worlds, Prentice Hall PTR.
  13. Fruin, J.J., 1971, Pedestrian Planning and Design, University of Michigan.
  14. Getchell, A., 2008, Agent-Based Modeling, Physics, 22, PP. 757-767.
  15. Gilbert, N., 2008, Agent-Based Models, Sage.
  16. Helbing, D., Farkas, I. & Vicsek, T., 2000, Simulating Dynamical Features of Escape Panic, Nature, 407, PP. 487-490.
  17. Helbing, D. & Johansson, A., 2009, Pedestrian, Crowd and Evacuation Dynamics, Springer.
  18. Helbing, D. & Molnar, P., 1995, Social Force Model for Pedestrian Dynamics, Physical Review E, 51, P. 4282.
  19. Henein, C.M. & White, T., 2005, Agent-Based Modelling of Forces in Crowds, Multi-Agent and Multi-Agent-Based Simulation, PP. 173-184.
  20. Heppenstall, A.J., Crooks, A.T., See, L.M. & Batty, M., 2012, Agent-Based Models of Geographical Systems, Springer.
  21. Hoogendoorn, S.P. & Bovy, P.H., 2005, Pedestrian Travel Behavior Modeling, Networks and Spatial Economics, 5, PP. 193-216.
  22. Korhonen, T. & Hostikka, S., 2010, Fire Dynamics Simulator with Evacuation: FDS+ Evac, Technical Reference and User’s Guide, VTT Technical Research Centre of Finland.
  23. Ligmann-Zielinska, A. & Jankowski, P., 2010, Exploring Normative Scenarios of Land Use Development Decisions with an Agent-Based Simulation Laboratory, Computers, Environment and Urban Systems, 34, PP. 409-423.
  24. Macal, C.M. & North, M.J., 2007, Tutorial on Agent-Based Modeling and Simulation, Proceedings of the 37th conference on Winter simulation, Winter Simulation Conference.
  25. Malleson, N., Heppenstall, A. & See, L., 2010, Crime Reduction through Simulation: An Agent-Based Model of Burglary, Computers, Environment and Urban Systems, 34, PP. 236-250.
  26. O'Sullivan, D. & Unwin, D., 2010, Geographic Information Analysis, Wiley Online Library.
  27. Song, Y., Gong, J., Li, Y., Cui, T., Fang, L. & Cao, W., 2013, Crowd Evacuation Simulation for Bioterrorism in Micro-Spatial Environments Based on Virtual Geographic Environments, Safety Science, 53, PP.105-113.
  28. Zhou, M., Dong, H., Wang, F.-Y., Wang, Q. & Yang, X., 2016, Modeling and Simulation of Pedestrian Dynamical Behavior Based on a Fuzzy Logic Approach, Information Sciences, 360, PP. 112-130.