نوع مقاله : مقاله پژوهشی

نویسنده

مربی، گروه مهندسی نقشه‌برداری، دانشگاه بجنورد

چکیده

منطقة مورد مطالعه در نیمة شمال‌شرق نیریز در استان فارس واقع شده است. ازنظر زمین‌شناسی ساختاری، منطقة مورد مطالعه در زون سنندج‌ـ سیرجان و با روند عمومی شمال‌غرب‌ـ جنوب‌شرق قرار دارد. واحدهای زمین‌شناسی را واحدهای آهکی، سریسیت‌ـ‌ کلریت شیست و آمفیبولیتی تشکیل می‌دهند. در این پژوهش، از تصاویر سنجندة استر (ASTER) و داده‌های مغناطیس‌سنجی زمینی، به‌منظور پتانسیل‌یابی و شناسایی نواحی امیدبخش دگرسانی و تحلیلی بر سیستم حاکم کانی‌زایی آهن‌دار در منطقة مورد مطالعه، استفاده شده است. علاوه‌براین، روش‌های ترکیب رنگی کاذب، نسبت‌گیری باندی و تحلیل مؤلفة اصلی روی داده‌های استر به‌کار رفت و مناطق دارای کانی‌زایی آهن‌دار و دگرسانی‌های هیدروکسیدهای آهن مشخص شدند. با استفاده از پردازش‌های کمّی و کیفی داده‌های مغناطیس‌سنجی زمینی، نقشه‌های باقی‌ماندة مغناطیسی، نقشة برگردان‌به‌قطب، ادامة فراسو، مشتق قائم مرتبة اول، زاویة کجی (نقشة تیلت)، سیگنال تحلیلی در منطقة مورد مطالعه تهیه شد. در نهایت و پس از تمامی پردازش‌های دورسنجی و مغناطیس‌سنجی زمینی، چهار آنومالی کانی‌زایی آهن‌دار امیدبخش در این منطقه شناسایی شد. برای اعتبارسنجی این نتایج، حدود 52 نمونه از منطقه برداشت شد و نمونه‌ها به‌روش‌ XRD تجزیه شدند. پنج گمانة حفاری، تا عمق حدود 140متری از سطح زمین، انجام شد که با نتایج حاصل از پردازش‌های صورت‌گرفته مطابقت و هم‌خوانی کامل دارند. به همین دلیل، استفاده از روش‌های یاد‌شده برای دسترسی به نتایج مناسب‌تر، به‌منظور انطباق نتایج داده‌ها با هم، ضروری به‌نظر می‌رسد. 

کلیدواژه‌ها

عنوان مقاله [English]

Integration of ASTER Remote Sensing and Magnetometer Data to Identify Iron Sources (Case Study Northeast Neyriz-Fars Province)

نویسنده [English]

  • Saeed Mojarad

Instructor, Surveying Group, University of Bojnourd

چکیده [English]

The study area is located in the northeast of neyriz and near the village of Ghori in Fars province. Geologically, the units of the study area are located in the zone-Sanandaj-Sirjan and with the general northwest-southeastern trend. Most of these Units calcareous units, units sericitic - chlorite schist and amphibolite units up. In this research, ASTER sensor images and ground magnetometric data were used to explore and identify iron-rich regions in the study area. In this investigation, we applied methods of False Color Composite (FCC), Band Ratio (BR), Principle Component Analysis (PCA) using ASTER images and areas with severe alterations propellitic, phyllic and sericite. Using methods of ground magnetometric processing, many methods containes reduce to pole (RTP), upward continuation, Analytic Signal, Tilt Angle, Vertical Derivative were used to identify the sources and we were able to identify the edges of these anomalies. In the study area, we were able to identify four anomalies under the ground that it is very important. The results of both methods explored four anomalies. Aster imager process and magnetometric data led to primary potential mineral map of the area. For credibility of results, 52 samples were taken and analyzed by XRD methods. Five boreholes have been drilled to a depth of 140 meters and all results are consistent with each other. The methods used are important and valuable

کلیدواژه‌ها [English]

  • ASTER
  • Remote sensing
  • Magnetometric
  • Iron
  • Tilt angle
آقانباتی، ع.، 1383، زمین شناسی ایران، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
افتخارنژاد، ج.، 1395، تفکیک بخش‌های مختلف ایران از نظر وضع ساختمانی در ارتباط با حوضه‌های رسوبی، نشریة انجمن نفت، شمارة 82، 28-19.
تلفورد، دبلیو.ام.، جلدارت، ال.پی.، شریف، آر.ای.، کیز، دی.ا.، 1368، ژئوفیزیک کاربردی، ترجمة زمردیان و حاجب حسینیه، جلد اول، انتشارات دانشگاه تهران.
حیدریان شهری، م.ر.، ١٣٨٤، مبانی اکتشافات ژئوفیزیک، دانشگاه فردوسی مشهد.
نجفیان، ط.، رنجبر، ح.، فتحیان‌پور، ن.، 1390، بررسی قدرتتفکیک آلتراسیون‌های مرتبط با کانسارهای مس پورفیری بااستفاده از تجمع طیفی داده‌های ALI، ASTER، اولین کنگرة جهانی مس، تهران.
نوروزی، غ.، 1388، ژئوفیزیک اکتشافی، انتشارات دانشگاه تهران.
 Alavi, M., 1991, Tectonic Map of the Middle East (Scale 1:5,000,000), Geological Survey of Iran.
Arkani-Hamed, J. & Urquhart, W.E.S., 1990, Reduction to Pole of the North American Magnetic Anomalie, Geophysics, 55 (2), PP. 218-225.
Blakely, R. J., 1996, Potential Theory in Gravity and Magnetic Application, Cambridge University Press, Cambridge, UK.
Chermeninov, V.B., 1988, Mapping of Hydrothermally Altered Rocks According to a Borehole Section, Soviet Geology and Geophysics, 29, PP. 88-97.
Clark, D. A., 1997, Magnetic Petrophysics and Magnetic Petrology: Aids to Geological Interpretation of Magnetic Surveys, AGSO Journal of Australian Geology & Geophysics, 17(2), PP. 83-103.
Cooper, G. R. J. & Cowan, D.R., 2006, Enhancing Potential Field Data Using Filters Based on the Local Phase, Computers & Geosciences, 32, PP. 1585-1591.
Crosta, A. & Moore, J., 1989, Enhancement of Landsat Thematic Mapper Imagery for Residual Soil Mapping in SW Minais Gerais State, Brazil: A Prospecting Case History in Greenstone Belt Terrain, Proceedings of the 7th ERIM Thematic Conference, Remote Sensing for Exploration Geology, PP. 1173-1187.
Dobrin, M. B. & Savit, C. H, 1998, Geophysical Prospecting, Fourth edition.
Donohve, J., Hil, Q. & Brewster, D., 2012, Geophysics at the Howsons Iron Project, NSW, Eastern Australias New Magnetite Resourse, ASEG: Australian Society of Exploration Geophysics, 2012(1), PP. 1-6..
Guun, P.J., Madment, D. & Miligan, P.R., 1997, Interpretation of Aeromagnetic Data in Area of Limited Outcrop, AGSO Journal of Australian Geology and Geophysics, 17(2), PP. 175-185.
Harris, J.R., Juan, H.X., Rainbird, R. & Behnia, P., 2014, A Comparison of Different Remotely Sensed Data for Classifying Bedrock Types in Canada’s Arctic: Application of the Robust Classification Method and Random Forests, Geosci. Canada, 41(4), PP. 557-584.
Hsu, S.K., Coppens, D. & Shyu, C.T., 1998, Depth to Magnetic Source Using Thegeneralized Analytic Signal, Geophysics, 63, PP. 1947-1957.
Miller, H.G. & Singh, V., 1994, Potential Field Tilt, a New Concept for Location of Potential Field Sources, Journal of Applied Geophysics, 32, PP. 213-217.
 
Mwaniki, M.W., Matthias, M.S. & Schellmann, G., 2015, Application of Remote Sensing Technologies to Map the Structural Geology of Central Region of Kenya, IEEE J. Sel. Top. Appl. EARTH Obs. Remote Sens., 8, PP. 1855-1867.
Nabighian, M.N., 1972, The Analytic Signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section: Its Properties and Use for Automated Anomaly Interpretation, Geophysics, 37, PP. 507-517.
Nakatsuka, T. & Okuma, S., 2006, Reduction of Magnetic Anomaly Observations from Helicopter Surveys at Varying Elevation, Exploration Geophysics, 37, PP. 121-128.
Neawsuparp, K., Charusiri, P. & Meyers, J., 2005, New Processing of Airborne Magnetic and Electromagnetic Data and Interpretation for Subsurface Structures in the Loei Area, Northeastern Thailand, Science Asia, 31, PP. 283-298.
Noorollahi, Y., Itoi, R., Fujii, H. & Tanaka, T., 2007, GIS Model for Geothermal Resource Exploration in Akita and Iwate Prefectures, Northern Japan, Computers & Geosciences, 33(8), PP. 1008-1021.
Ranjbar, H., Honarmand, M. & Moezifar, Z., 2004, Application of the Crosta Technique for Porphyry Copper Alteration Mapping, Using ETM Data in the Southern Part of the Iranian Volcanic Sedimentary Belt, J. Asian Earth Sci., 24, PP. 237-243.
Richards, J.A, 1999, Remote Sensing Digital Image Analysis: An Introduction, Springer-Verlag, Berlin, Germany.
Sabins, F.F., 1999, Remote Sensing for Mineral Exploration, Ore Geology Reviews, 14(3-4), PP. 157-183.
Sheikholeslami, M.R., Pique, A., Mobayen, P., Sabzehei, M., Bellon, H. & Emami, M.H., 2008, Tectono-Metamorphic Evolution of the Neyriz Metamorphic Complex, Quri-Kor-e-Sefid Area (Sanandaj-Sirjan Zone, SW Iran), J Asian Earth Sci, 31, PP. 504- 521.
Shoham, Y., 1978, Magnetotelluric Geophysical Exploration Method – Review, AAPG Bull -Am. Assoc. Petrol. Geol., 62 (11), P. 2362.
Silver, E., MacKnight, R., Male, E., Pickles, W., Cocks, P. & Waibel, A., 2011, LiDAR and Hyperspectral Analysis of Mineral Alteration and Faulting on the West Side of the Humboldt Range, Nevada, Geosphere, 7(6), PP. 1357-1368.
Stöcklin, J., 1968, Structural History and Tectonics of Iran: A Review, American Ciation of Petroleum Geologists Bulletin, 52(7), PP. 1229-1258.
Tangestani, M.H., Jaffari, L., Vincent, R.K. & Sridhar, B.B.M., 2011, Spectral Characterization and ASTER-Based Lithological Mapping of an Ophiolite Complex: A Case Study from Neyriz Ophiolite, SW Iran, Remote Sens. Environ., 115, PP. 2243-2254.
Tarlowski, C., Gunn, P.J. & Mackey, T., 1997, Enhancements of the Magnetic Map of Australia, AGSO Journal of Australian Geology and Geophysics, 17, PP. 77-82.
Tommaso, I.M. & Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol. Rev. 32, 275–290.
van der Meer, F.D., van der Werff, H.M.A., van Ruitenbeek, F.J.A., Hecker, C.A., Bakker, W.H., Noomen, M.F., van der Meijde, M., Carranza, E.J.M., de Smeth, J.B. & Woldai, T., 2012, Multi-and Hyperspectral Geologic Remote Sensing: A Review, Int. J. Appl. Earth Obs. Geoinf., 14, PP. 112-128.
Verduzco, B., Fairhead, D., Green, C.M. & MacKenzie, C., 2004, New Insights into Magnetic Derivatives for Structural Mapping, The Leading Edge, 32(2), PP. 116-119.