نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مرکز مطالعات سنجش از دور وGIS ، دانشکدة علوم زمین، دانشگاه شهید بهشتی

2 دانشجوی دکتری مرکز مطالعات سنجش از دور وGIS ، دانشکدة علوم زمین، دانشگاه شهید بهشتی

3 مرکز مطالعات سنجش از دور وGIS ، دانشکدة علوم زمین، دانشگاه شهید بهشتی

چکیده

شاخص‌های طیفی پوشش گیاهی به‌منزلة ابزاری مناسب برای تخمین میزان تولید محصولات کشاورزی استفاده می‌شوند. بااین‌حال، تعداد محدود تصاویر از عوامل اصلی کاهش کارآیی شاخص‌ها به‌منظور تخمین تولید شمرده می‌شود. از سوی دیگر، ارزیابی توانایی شاخص‌ها در تخمین تولید از راه ترکیب داده‌های مادیس و لندست، در مواردی که تعداد داده‌های لندست کم باشد، کمتر مورد توجه قرار گرفته است. هدف تحقیق حاضر، در گام نخست، معرفی شاخص‌ها یا شاخص منتخب در تخمین تولید کلزا و در گام بعدی، استفاده از تکنیک‌های تلفیق داده برای افزایش کارآیی شاخص منتخب است. کلزا ازجمله محصولات کشاورزی است که، به‌دلیل گل‌دهی در دورة رشد، ویژگی‌های طیفی خاصی دارد. در این تحقیق، پایگاه داده‌ای از میزان تولید محصول کلزا و سری زمانی داده‌های لندست و مادیس کشت‌و‌صنعت مغان تهیه و سپس ده شاخص متفاوت به‌قصد تخمین تولید کلزا ارزیابی شد. در ادامه، رابطة میزان تولید با شاخص پیشنهادی بررسی و مشخص شد که شاخصNDYI ، در طول زمان گل‌دهی، دقتی بیشتر از سایر شاخص‌ها دارد (r = 0.73). با تلفیق داده‌های سری زمانی لندست و مادیس مبتنی‌بر الگوریتم مدل تطبیقی ادغام بازتابندگی مکانی و زمانی بهبودیافته (ESTARFM)، همبستگی و RMSE (kg/ha) به‌ترتیب 7% و 0.11 افزایش و کاهش یافت. تحقیق حاضر نشان داد که استفاده از تکنیک‌های تلفیق داده امکانِ افزایش کارآیی شاخص‌های طیفی را به‌منظور تخمین تولید محصول فراهم می‌کند.

کلیدواژه‌ها

عنوان مقاله [English]

Estimating Yield of Canola Based on Time Series of Remote Sensing Data

نویسندگان [English]

  • Davoud Ashourloo 1
  • Hamid Salehi Shahrabi 2
  • Hamed Nematollahi 3

1 Assistant Prof. of R.S. & GIS Research Center, Shahid Beheshti University

2 Ph.D. Student of R.S. & GIS Research Center, Shahid Beheshti University

3 R.S. & GIS Research Center, Shahid Beheshti University

چکیده [English]

Spectral vegetation indices have been used as a useful tool in remote sensing to estimate the yield of agricultural crops. However, one factor, which reduces the capability of indices for crop yield estimation, is the limited number of available satellite images. Furthermore, in cases when there are not enough Landsat images, the capabilities of spectral indices in yield estimation using a fusion of MODIS and Landsat data, have been less investigated. The aim of this paper is, first, to introduce the most efficient index/indices for estimating the canola yield and, second, to try to use data fusion techniques in order to increase the efficiency of the selected index/indices. Due to flowering in the growth period, canola has special spectral features. In this research, to estimate the yield of canola, a yield database along with the time series of the Landsat and MODIS data of Moghan Agro-Industry Company fields were provided. Then, 10 spectral indices were evaluated for estimating the canola yield. The relations between the canola yield and the candidate indices were investigated and it was revealed that, during the flowering period, the NDYI index obtained a higher accuracy compared with other indices (r = 0.73). The fusion of the Landsat and MODIS time series data based on Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), resulted in a 7%-increase and an 11%-decrease in correlation and RMSE (kg/ha), respectively. This research indicated that data fusion techniques are able to improve the performance of spectral indices and hence increase the accuracy of crop yield estimation.

کلیدواژه‌ها [English]

  • Agriculture
  • Spectral indices
  • Yield estimation
  • Canola
  • Data fusion
  • MODIS and Landsat
خواجه‌پور، م.ر.، 1391، گیاهان صنعتی، جهاد دانشگاهی واحد صنعتی اصفهان.
Adams, M.L., Philpot, W.D. & Norvell, W., 1999, Yellowness Index: An Application of Spectral Second Derivatives to Estimate Chlorosis of Leaves in Stressed Vegetation, International Journal of Remote Sensing, 20, PP. 3663-3675.
Anderson, G.L., J.D. Hanson & Hanson., R.H., 1993, Evaluating Landsat Thematic Mapper Derived Vegetation Indices for Estimating Above-Ground Biomass On Semiarid Rangelands, Remote Sensing of Environment, 45, PP. 165-175.
Ban, H.-Y., Kim, K.S., Park, N.-W. & Lee, B.-W., 2016, Using MODIS Data to Predict Regional Corn Yields, Remote Sensing, 9, PP. 1-16.
Bannari, A., Morin, D., Bonn, F. & Huete, A.R., 1995, A Review of Vegetation Indices, Remote Sensing Reviews, 13, PP. 95-120.
Becker-Reshef, I., Vermote, E., Lindeman, M. & Justice, C., 2010, A Generalized Regression- Based Model for Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data, Remote Sensing of Environment, 114, PP. 1312-1323.
Boken, V.K. & Shaykewich, C.F., 2002, Improving an Operational Wheat Yield Model Using Phenological Phase-Based Normalized Difference Vegetation Index, International Journal of Remote Sensing, 23, PP. 4155-4168.
Eastwood, J., Yates, M., Thomson, A. & Fuller, R., 1997, The Reliability of Vegetation Indices for Monitoring Saltmarsh Vegetation Cover, International Journal of Remote Sensing, 18, PP. 3901-3907.
Elvidge, C.D. & Chen., Z.K., 1995, Comparison of Broad-Band and Narrow-Band Red and Near-Infrared Vegetation Indices, Remote Sensing of Environment, 54, PP. 38-48.
Faraji, A., Latifi, N., Soltani, A. & Rad, A.H.S., 2008, Effect of High Temperature Stress and Supplemental Irrigation On Flower and Pod Formation in Two Canola (Brassica Napus L.) Cultivars at Mediterranean Climate, Asian Journal of Plant Sciences, 7, PP. 343-351.
Gao, F., Masek, J., Schwaller, M. & Hall, F., 2006, On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance, IEEE Trans. Geosci. Remote Sens, 44, PP. 2207-2218.
Gao, F., Anderson, M.C., Zhang, X., Yang, Z., Alfieri, J.G., Kustas, W.P., Mueller, R., Johnson, D.M. & Prueger, J.H., 2017, Toward Mapping Crop Progress at Field Scales Through Fusion of Landsat and MODIS Imagery, Remote Sensing of Environment, 188, PP. 9-25.
Gertsmann, H., Moller, M. & Glaber, C., 2016, Optimization of Spectral Indices and Long-Term Separability Analysis for Classification of Cereal Crops Using Multi-Spectral RapidEye Imagery, International Journal of Applied Earth Observation and Geoinformation, 52, PP. 115-125.
 
 
Gitelson, A.A., Gritz, Y. & Merzlyak, M.N., 2003, Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves, Journal of Plant Physiology, 160, PP. 271-282.
Hatfield, J.L. & Prueger, J.H., 2010, Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteris-tics at Different Growth Stages Under Varying Management Practices, Remote Sensing, 2, PP. 562-–578.
Huete, A., 1987, Soil-Dependent Spectral Response in A Developing Plant Canopy, Agronomy Journal, 79, PP. 61-68.
Huete, A., Justice, C. & Liu, H., 1994, Development of vegetation and soil indices for MODIS-EOS, Remote Sensing of Environment, 49, PP. 224-234.
Huete, A.R. & Tucker, C.J., 1991, Investigation of Soil Influences in AVHRR Red and Near Infrared Vegetation Index Imagery, Int. J. Rem. Sens., 12, PP. 1223-1242.
Johnson, M.D., Hsieh, W.W., Cannon, A.J., Davidson, A. & Bédard, F., 2016, Crop Yield Forecasting on the Canadian Prairies by Remotely Sensed Vegetation Indices and Machine Learning Methods, Agricultural and Forest Meteorology, 218, PP. 74-84.
Mkhabela, M.S., Bullock, P., Raj, S., Wang, S. & Yang, Y., 2011, Crop Yield Forecasting on the Canadian Prairies Using MODIS NDVI Data, Agricultural and Forest Meteorology, 151, PP. 385-393.
Piekarczyk, J., 2011. Winter oilseed-rape yield estimates from hyperspectral radiometer measurements. Quaestiones Geographicae 30 (1), 77–84.
Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H. & Sorooshian, S., 1994, A Modified Soil Adjusted Vegetation Index, Remote Sensing of Environment, 48, PP. 119-126.
Richardson, A.J. & Wiegand, C.L., 1977, Distinguishing Vegetation from Soil Background Information, Photogrammetric Engineering and Remote Sensing, 43, PP. 1541-1552.
Sakamoto, T., Gitelson, A.A. & Arkebauer, T.J., 2013, MODIS-Based Corn Grain Yield Estimation Model Incorporating Crop Phenology Information, Remote Sensing of Environment, 131, PP. 215-231.
Sulik, J.J. & Long, D.S., 2016, Spectral Considerations for Modeling Yield of Canola, Remote Sensing of Environment, 184, PP. 161-174.
Tucker, C.J. & Sellers, P., 1986, Satellite Remote Sensing of Primary Production, International Journal of Remote Sensing, 7, PP. 1395-1416.
Walker, J.J., de Beurs, K.M., Wynne, R.H. & Gao, F., 2012, Evaluation of Landsat and MODIS Data Fusion Products for Analysis of Dryland Forest Phenology, Remote Sensing of Environment, 117, PP. 381-393.
Zhu, X., Chen, J., Gao, F., Chen, X. & Masek, J.G., 2010, An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions, Remote Sensing of Environment, 114, PP. 2610-2623.