طبقه‌‌بندی تصاویر ابرطیفی با استفاده از ترکیب ویژگی‌‌های مستخرج از ماتریس محلی کرنل وزن‌‌دار ویژگی‌‌های طیفی و فرکتالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری سنجش از دور گروه فتوگرامتری و سنجش از دور، دانشکده ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشیار گروه فتوگرامتری و سنجش از دور ، دانشکده ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

سابقه و هدف: در سال‌‌های اخیر استفاده از تصاویر ابرطیفی به‌دلیل‌‌ غنای بالای طیفی در زمینه‌های مختلف مطالعات زمین به‌خصوص در سنجش از دور بسیار افزایش یافته است. طبقه‌‌بندی این تصاویر به‌منظور استخراج اطلاعات از آنها همواره با چالش‌‌هایی مختلفی همچون چگونگی مدیرت ابعاد این داده‌‌ها و صحت کم طبقه‌‌بندی در هنگام وجود تعداد محدودی از نمونه‌‌های آموزشی همراه است. افرایش صحت طبقه‌‌بندی این تصاویر با هدف مطالعات دقیق پدیده‌‌‌‌ها و تغییرات سطح زمین همواره از موضوعات مورد مطالعة جامعة علمی سنجش از دور بوده است. در سال‌‌های اخیر استفاده از ویژگی‌‌های مکانی به‌منظور افزایش صحت طبقه‌‌بندی تصاویر ابرطیفی بسیار رایج شده است. تاکنون روش‌‌های مختلفی برای طبقه‌‌بندی طیفی-مکانی تصاویر ابرطیفی معرفی شده است و پژوهش‌های مربوطه در راستای معرفی روش‌‌هایی با ساختار ساده‌‌تر و صحت بالاتر نیز در جریان است. به‌دلیل‌‌ وجود رابطه‌‌های پیچیده میان باندهای مختلف تصویر ابرطیفی با الهام از پژوهش‌های موجود در شاخة بینایی ماشین در این پژوهش روشی توسعه داده شده است که می‌‌تواند روابط پیچیدة میان ویژگی‌‌های طیفی و مکانی در یک تصویر ابرطیفی را مدل‌سازی کند. هدف اصلی این مقاله ارائة روشی جدید و کارا مبتنی بر ترکیب ویژگی‌‌های مستخرج از ماتریس محلی کرنل وزن‌‌دار ویژگی‌‌های طیفی و فرکتالی به‌منظور تولید ویژگی برای طبقه‌‌بندی تصاویر ابرطیفی است.
مواد و روش‌‌ها: به‌منظور طبقه‌‌بندی تصاویر ابرطیفی در پژوهش حاضر ابتدا یک مرحله کاهش بعد بر روی تصویر ابرطیفی انجام می‌‌شود. در مرحلة بعد ویژگی‌‌های مکانی مبتنی بر بعد فرکتال جهت‌‌دار تولید می‌شوند و مجدداً این ویژگی‌‌ها کاهش بعد پیدا می‌‌کنند. در مرحلة بعد ویژگی‌‌های مستخرج از ماتریس محلی کرنل وزن‌‌دار از هر دو دسته ویژگی‌‌های طیفی و فرکتالی تولید می‌‌شوند. این ویژگی‌‌های ثانویه وابستگی‌‌های محلی غیرخطی میان ویژگی‌‌های طیفی و فرکتالی را که در روش‌‌های پیشین طبقه‌‌بندی مورد توجه نبوده است، در فرایند تولید ویژگی لحاظ می‌‌کنند که در نهایت سبب افزایش صحت طبقه‌‌بندی می‌‌شوند. سپس این دو دسته بردار ویژگی جدید برای هر پیکسل با هم الصاق می‌شود و یک بردار غنی از اطلاعات طیفی مکانی را تشکیل می‌‌دهد. در نهایت به‌منظور تعیین برچسب هر پیکسل، بردار ویژگی حاصل از الگوریتم ماشین بردار پشتیبان طبقه‌‌بندی می‌‌شود. آزمایش‌‌های این پژوهش بر دو تصویر مرجع ابرطیفی واقعی ایندین پاین و دانشگاه پاویا انجام شده است.
نتایج و بحث: تحلیل نتایج نشان می‌‌دهد که روش پیشنهادی با در نظر گرفتن ویژگی‌‌های مستخرج از ماتریس محلی کرنل وزن‌‌دار ویژگی‌‌های طیفی فرکتالی موجب افزایش 20 و 18 درصدی صحت طبقه‌‌بندی در مقایسه با طبقه‌‌بندی با ویژگی‌‌های طیفی تنها به‌ترتیب در تصاویر ایندین پاین و دانشگاه پاویا شده است. این نتیجه تأیید می‌‌کند که در نظر گرفتن اطلاعات مکانی به‌طور مؤثر سبب افزایش چشمگیر صحت طبقه‌‌بندی حتی زمانی که نمونه‌‌های آموزشی اندکی در دسترس باشد، می‌‌شود. همچنین رویکرد پیشنهادی این پژوهش در مقایسه با چندین پژوهش دیگر در این حوزه به صحت‌‌های بالاتری رسیده است.
نتیجه‌‌گیری: عملکرد بهتر روش پیشنهادی در مقایسه با دیگر روش‌های رقیب به‌دلیل‌‌ در نظر گرفتن وابستگی‌‌های محلی غیرخطی میان ویژگی‌‌های طیفی و فرکتالی است که تاکنون در پژوهش‌های پیشین مورد توجه نبوده است. در پژوهش‌های آتی در نظر داریم که رویکرد پیشنهادی را درگام اول از نظر زمانی و در گام بعدی با در نظر گرفتن تعداد بیشتری از ویزگی‌‌های مبتنی بر هندسة فرکتال از نظر صحت بهبود دهیم.

کلیدواژه‌ها


عنوان مقاله [English]

Classification of Hyperspectral Images Using a Combination of Features Extracted From the Weighted Local Kernel Matrix of Spectral and Fractal Features

نویسندگان [English]

  • Behnam Asghari Beirami 1
  • Mehdi Mokhtarzade 2
1 Ph.D. student of remote sensing in Department of Photogrammetry and Remote Sensing, Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran, Iran
2 Associate Proffesor, Department of Photogrammetry and Remote Sensing, Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

Introduction: In recent years, the use of hyperspectral imagery in various fields of Earth science, especially in remote sensing, has significantly increased due to its rich spectral information. However, the classification of these images and the extraction of useful information from them present variues challenges. These challenges include the effective management of high-dimensional data and the achievement of accurate classification when the number of training samples is limited. One of the primary objectives of the remote sensing scientific community has been to improve the accuracy of image classification, thereby facilitating comprehensive investigations of surface phenomena and changes. In recent years, there has been a growing interest in the use of spatial features as a means of improving the classification accuracy of hyperspectral images. Numerous methods have been suggested for the spectral-spatial classification of hyperspectral images. Currently, research is being conducted with the objective of developing simpler yet more accurate methodologies. The existence of intricate relationships between different bands of the hyperspectral image, as evidenced by research in the field of machine vision, has prompted the development of a novel methodology in current research for modelling the complex relationships between spectral and spatial features within a hyperspectral image. The main objective of this article is to present a novel and efficient approach that combines features derived from weighted local kernel matrices of spectral and fractal characteristics for hyperspectral image classification.
Materials and methods:  In the present research, hyperspectral images are first subjected to a dimension reduction step. Subsequently, spatial features are generated based on the directional fractal dimension, and these features are further reduced in dimension. In the subsequent stage, the novel features are derived from the weighted local kernel matrices of both the spectral and fractal feature groups. These secondary features consider nonlinear local dependencies between spectral and fractal characteristics, which were not previously considered in other feature generation methods. Ultimately, this stage serves to enhance the accuracy of the classification process. The resulting feature vectors from both groups are then merged, creating a comprehensive vector that is rich in spectral-spatial information for each pixel. Finally, the support vector machine (SVM) algorithm is employed to classify the obtained feature vector and assign labels to each pixel. The experiments conducted as part of this research were carried out on two real hyperspectral benchmark images: one depicting Indian pine and the other the University of Pavia.
Results and discussion: The analysis of the outcomes demonstrates the effectiveness of the proposed approach, which incorporates features derived from weighted local kernel matrices of both spectral and fractal characteristics. The classification accuracy of both the Indian Pine and University of Pavia images is enhanced by 20% and 18%, respectively, compared to the exclusive use of spectral features. These findings confirm that incorporating spatial information significantly enhances classification accuracy, particularly in scenarios with limited training samples. Furthermore, the results demonstrate that the proposed method exhibits superior accuracy compared to other studies conducted in this domain.
Conclusion: The enhanced performance of the proposed method in comparison to other competitors can be attributed to the incorporation of local non-linear dependencies between both spectral and fractal features, which have not been considered in previous studies. In the future, further improvements to the proposed approach are anticipated. Firstly, efforts will be made to optimise the efficiency of the proposed method in terms of processing time. Furthermore, the accuracy of the method will be enhanced by considering additional fractal features in subsequent steps. These refinements will be pursued in future research endeavours.

کلیدواژه‌ها [English]

  • Weighted local kernel matrix
  • Classification
  • Hyperspectral
  • Fractal dimensión
  • Texture of the image
Ahmadi, S. A. and N. Mehrshad., 2022, Spectral-spatial feature extraction method for hyperspectral images classification using multiscale superpixel and covariance map, Geocarto International 37(2), pp. 678-695. https://doi.org/10.1080/10106049.2020.1734874
Anand, R., S. Veni and J. Aravinth., 2021, Robust classification technique for hyperspectral images based on 3D-discrete wavelet transform, Remote Sensing. 13(7), pp. 1255. https://doi.org/10.3390/rs13071255
 
Asghari Beirami, B. and M. Mokhtarzade., 2020, Spatial-spectral classification of hyperspectral images based on extended morphological profiles and guided filter, Computer and Knowledge Engineering, 2(2), pp. 2-8. https://doi.org/10.22067/CKE.V2I2.81519
 
Beirami, B. A. and M. Mokhtarzade., 2017, SVM classification of hyperspectral images using the combination of spectral bands and Moran's I features, In IEEE 10th Iranian Conference on Machine Vision and Image Processing (MVIP), Isfahan, Iran https://doi.org/10.1109/IranianMVIP.2017.8342334
 
Beirami, B. A. and M. Mokhtarzade., 2019, Spatial-Spectral Random Patches Network for Classification of Hyperspectral Images, Traitement du Signal, 36(5), pp. 399-406. https://doi.org/10.18280/ts.360504
 
Beirami, B. A. and M. Mokhtarzade., 2022, Spatial-spectral classification of hyperspectral images based on multiple fractal-based features, Geocarto International, 37(1), pp. 231-245. https://doi.org/10.1080/10106049.2020.1713232
 
Benediktsson, J. A., J. A. Palmason and J. R. Sveinsson., 2005, Classification of hyperspectral data from urban areas based on extended morphological profiles, IEEE Transactions on Geoscience and Remote Sensing, 43(3), pp. 480-491. https://doi.org/10.1109/TGRS.2004.842478
 
Cavallaro, G., M. Dalla Mura, J. A. Benediktsson and L. Bruzzone., 2015, Extended self-dual attribute profiles for the classification of hyperspectral images, IEEE Geoscience and Remote Sensing Letters, 12(8), pp. 1690-1694. https://doi.org/10.1109/LGRS.2015.2419629
 
Duan, P., P. Ghamisi, X. Kang, B. Rasti, S. Li and R. Gloaguen., 2020, Fusion of dual spatial information for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, 59(9), pp. 7726-7738. https://doi.org/10.1109/TGRS.2020.3031928
 
Falco, N., J. A. Benediktsson and L. Bruzzone,. 2015, Spectral and spatial classification of hyperspectral images based on ICA and reduced morphological attribute profiles, IEEE Transactions on Geoscience and Remote Sensing, 53(11), pp. 6223-6240. https://doi.org/10.1109/TGRS.2015.2436335
 
Fang, L., N. He, S. Li, A. J. Plaza and J. Plaza., 2018, A new spatial–spectral feature extraction method for hyperspectral images using local covariance matrix representation, IEEE Transactions on Geoscience and Remote Sensing, 56(6), pp. 3534-3546. https://doi.org/10.1109/TGRS.2018.2801387
 
Feng, F., Y. Zhang, J. Zhang and B. Liu., 2022, Small sample hyperspectral image classification based on cascade fusion of mixed spatial-spectral features and second-order pooling, Remote Sensing, 14(3), pp. 505. https://doi.org/10.3390/rs14030505
 
Gomez, C., R. A. V. Rossel and A. B. McBratney, 2008, Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study, Geoderma, 146(3-4), pp. 403-411. https://doi.org/10.1016/j.geoderma.2008.06.011
 
He, N., M. E. Paoletti, J. M. Haut, L. Fang, S. Li, A. Plaza and J. Plaza., 2018, Feature extraction with multiscale covariance maps for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, 57(2), pp. 755-769. https://doi.org/10.1109/TGRS.2018.2860464
 
Kallas, M., C. Francis, L. Kanaan, D. Merheb, P. Honeine and H. Amoud, 2012, Multi-class SVM classification combined with kernel PCA feature extraction of ECG signals, In IEEE 19th International Conference on Telecommunications (ICT), Jounieh, Lebanon. https://doi.org/10.1109/ICTEL.2012.6221261
 
Kaul, A. and S. Raina., 2022, Support vector machine versus convolutional neural network for hyperspectral image classification: A systematic review, Concurrency and Computation: Practice and Experience, 34(15), pp. e6945. https://doi.org/10.1002/cpe.6945
 
Kumar, B. and O. Dikshit, 2015, Integrating spectral and textural features for urban land cover classification with hyperspectral data, In IEEE Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland. https://doi.org/10.1109/JURSE.2015.7120517
 
Kumar, B. and O. Dikshit., 2015, Spectral–spatial classification of hyperspectral imagery based on moment invariants, IEEE Journal of selected topics in applied earth observations and remote sensing, 8(6), pp. 2457-2463. https://doi.org/10.1109/JSTARS.2015.2446611
 
Leng, J., T. Li, G. Bai, Q. Dong and H. Dong., 2016, Cube-CNN-SVM: A novel hyperspectral image classification method, In IEEE 28th International conference on tools with artificial intelligence (ICTAI), San Jose, CA, USA. https://doi.org/10.1109/ICTAI.2016.0158
 
Liu, Y., S. Lu, X. Lu, Z. Wang, C. Chen and H. He., 2019, Classification of urban hyperspectral remote sensing imagery based on optimized spectral angle mapping, Journal of the Indian Society of Remote Sensing, 47, pp. 289-294. https://doi.org/10.1007/s12524-018-0929-1
 
Mahdi, M. S. and A. A. A. Hassan., 2016, Satellite images classification in rural areas based on fractal dimension, Journal of Engineering, 22(4), pp. 147-157. https://doi.org/10.31026/j.eng.2016.04.10
 
Mirzapour, F. and H. Ghassemian., 2015, Improving hyperspectral image classification by combining spectral, texture, and shape features, International Journal of Remote Sensing, 36(4), pp. 1070-1096. https://doi.org/10.1080/01431161.2015.1007251
 
Myint, S., 2003, Fractal approaches in texture analysis and classification of remotely sensed data: Comparisons with spatial autocorrelation techniques and simple descriptive statistics, International Journal of remote sensing, 24(9), pp. 1925-1947. https://doi.org/10.1080/01431160210155992
 
Pang, Y., Y. Yuan and X. Li., 2008, Gabor-based region covariance matrices for face recognition, IEEE Transactions on circuits and systems for video technology,18(7), pp. 989-993. https://doi.org/10.1109/TCSVT.2008.924108
 
Peyghambari, S. and Y. Zhang, 2021, Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review, Journal of Applied Remote Sensing, 15(3), pp. 031501-031501. https://doi.org/10.1117/1.JRS.15.031501
 
Qin, H., L. Qin, L. Xue and C. Yu., 2012, Gabor-based weighted region covariance matrix for face recognition, Electronics letters, 48(16), pp. 992-993. https://doi.org/10.1049/el.2012.1519
 
Singh, P., P. C. Pandey, G. P. Petropoulos, A. Pavlides, P. K. Srivastava, N. Koutsias, K. A. K. Deng and Y. Bao., 2020, Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends, Hyperspectral remote sensing: Theory and Applications, Elsevier, ISBN: 978-0-08-102894-0, pp. 121-146. https://doi.org/10.1016/B978-0-08-102894-0.00009-7.
 
Sun, Y., Z. Fu and L. Fan., 2019, A novel hyperspectral image classification pattern using random patches convolution and local covariance, Remote Sensing, 11(16), pp. 1954. https://doi.org/10.3390/rs11161954
 
Tuzel, O., F. Porikli and P. Meer., 2006, Region covariance: A fast descriptor for detection and classification, Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part II 9, Springer. https://doi.org/10.1007/11744047_45
 
Wang, L., J. Zhang, L. Zhou, C. Tang and W. Li., 2015, Beyond covariance: Feature representation with nonlinear kernel matrices, Proceedings of the IEEE international conference on computer vision, Santiago, Chile. https://doi.org/10.1109/ICCV.2015.519
 
Xu, Y., B. Du, F. Zhang and L. Zhang, 2018, Hyperspectral image classification via a random patches network, ISPRS journal of photogrammetry and remote sensing, 142, pp. 344-357.https://doi.org/10.1016/j.isprsjprs.2018.05.014
 
Yang, W., J. Peng, W. Sun and Q. Du, 2019, Log-euclidean kernel-based joint sparse representation for hyperspectral image classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12), pp. 5023-5034. https://doi.org/10.1109/JSTARS.2019.2952408
 
Yu, X., Y. Feng, Y. Gao, Y. Jia and S. Mei., 2021, Dual-weighted kernel extreme learning machine for hyperspectral imagery classification, Remote Sensing, 13(3), pp. 508. https://doi.org/10.3390/rs13030508
 
Zheng, J., Y. Feng, C. Bai and J. Zhang., 2020, Hyperspectral image classification using mixed convolutions and covariance pooling, IEEE Transactions on Geoscience and Remote Sensing, 59(1), pp. 522-534. https://doi.org/10.1109/TGRS.2020.2995575
 
Zhu, J., J. Shi, H. Chu, J. Hu, X. Li and W. Li., 2011, Remote sensing classification using fractal dimensions over a subtropical hilly region, Photogrammetric Engineering & Remote Sensing 77(1), pp. 65-74. https://doi.org/10.14358/PERS.77.1.65