نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

2 دانشگاه شهید بهشتی، دانشکده علوم زمین

3 دانشگاه تربیت مدرس، دانشکده علوم زمین

4 دانشگاه آزاد اسلامی، واحد تهران شمال، پژوهشکده علوم زمین

چکیده

تفکیک و به نقشه در­آوردن زون‌های دگرسانی در اکتشاف تیپ‌‌های مس پورفیری از اهمیت ویژه‌ای برخوردار است. به منظور بارزسازی این زون‌های دگرسان از داده‌های ماهواره ترا سنجنده‌ استر استفاده شده است. محدوده سرکوه در کمربند ماگمایی ارومیه-دختر و نیز کمربند کانی زایی دهج- ساردوئیه قرار دارد. عمده رخنمون­های سنگی موجود در این محدوده را رخنمو‌ن‌های مربوط به ترشیری تشکیل می­دهند. این رخنمون‌ها شامل نهشته‌های آتشفشانی مربوط به ائوسن و نیز توده­های نفوذی بعد از ائوسن به همراه سنگهای هورنفلسی شده هستند. نهشته­های آتشفشانی که عمدتاً ترکیب آندزیتی دارند به صورت نهشته­های ولکانوکلاستیکی و نیز گدازه­ای دیده می­شوند. در محدوده سرکوه توده‌های نفوذی متعددی شناسایی شده است. توده گرانیتی- گرانودیوریتی ممزار گسترده‌ترین توده موجود در محدوده سرکوه است. توده‌های گرانودیوریتی - کوارتز دیوریتی سرکوه پورفیری و نیز توده میکرودیوریت پورفیری در محدوده سرکوه رخنمون دارند که میزبان کانی زایی مس پورفیری و دگرسانی‌های همراه هستند. در این منطقه، هاله‌های دگرسانی مختلفی وجود دارد که شامل پتاسیک، پروپیلیتیک، فیلیک، آرژیلیکی، سیلیسی و آغشتگی‌های ثانویه به اکسید‌‌ هیدروکسیدهای آهن بوده و با پردازش ماهواره ترا سنجنده استر بارزسازی شدند. برای تفکیک کانی‌های شاخص مرتبط با دگرسانی‌های مس، از روش‌های تصاویر ترکیب رنگی کاذب، نسبت باندی، ترکیب رنگی کاذب حاصل از نسبت باندی و روش‌های آنالیز طیفی ) Matched Filtering، Ls-fit ( کانی­زایی استفاده شد. در دگرسانی آرژیلیک، اکسیدهای آهن و پروپیلیتیک از روش‌های Matched Filtering، Ls-fit و روش نسبت باندی استفاده شده که از بین این روشها، الگوریتم MF و نسبت باندی نتایج بهتری داشت. در تفکیک دگرسانی‌های فیلیک، روش نسبت باندی و دگرسانی سیلیسی در منطقه با روش‌های ذکر شده جواب نداده است. با توجه به بررسی‌های کانی‌شناسی از طریق مطالعات میکروسکوپی، نمونه‌های منطقه سرکوه در دگرسانی پتاسیک حاوی کوارتز + فلدسپار پتاسیک + بیوتیت + مگنتیت+ سولفید ها + سریسیت است، کانی‌های موجود در دگرسانی پروپیلیتیک شامل کلسیت + کلریت + اپیدوت + اکتینولیت + سریسیت + پیریت در محیط پیرامونی استوک و سنگ‌های آتشفشانی اطراف است و کانی‌های موجود در دگرسانی فیلیک هم شامل سریسیت و کوارتز است. نتایج به دست آمده از پردازش تصاویر ماهواره‌ای با نتایج حاصل از آنالیز XRD مطابقت دارد. مجموعه هاله‌های دگرسان با بازید صحرایی، منطقه‌بندی نسبتاً منظمی با روند شمال‌شرق- جنوب‌غرب با مرکزیت توده نفوذی سرکوه پورفیری را نشان می‌دهند.

کلیدواژه‌ها

عنوان مقاله [English]

Comparison of the results of satellite image processing for extraction of alterations with mineralogy and field studies in Sarkuh Porphyry Copper Deposit

نویسندگان [English]

  • Sholeh Malekshahi 1
  • Iraj Rassa 2
  • Nematollah Rashid Nezhad Omran 3
  • Mohammad Lotfi 4

1 Islamic Azad University, Science and Research Branch of Tehran

2 Shahid Beheshti University, Faculty of Geosciences

3 Tarbiat Modares University, Faculty of Geosciences

4 Islamic Azad University, Tehran North Branch, Geosciences Research Institute

چکیده [English]

Separation and mapping of alteration zones in the exploration of porphyry copper types is of particular importance. Aster sensor of Terra satellite image is used to show these alteration zones. There are different alteration in the Sarkuh area, include potassic, propylitic, phyllic, argillic, siliceous veins, and secondary effects to iron oxide-hydroxides that are reflected in the development of Aster images. Using methods such as color composition, band ratio, false color composition from band bonding and spectral analysis methods(Matched Filtering ، Ls-fit), was used. In argillic alteration, iron oxides and propylitic processes, Matched Filtering, Ls-fit And the bandwidth ratio method is used among these methods, the MF algorithm  and bandy's ratio is well answered. Potassic alteration has a close connection with mineralization. propylititic alteration includes calcite + chlorite + epidote + actinolite + sericite + pyrite in the surroundings of Stock and also volcanic rocks around it.. Phyllic alteration contains sericite and quartz.  The results obtained in this section are also consistent with the results of the XRD analysis. In survey field,  the set of alteration zones shows a relatively regular zoning with the north-east-southwest process with the center of the porphyry-type Sarkuh porphyry mass.

کلیدواژه‌ها [English]

  • ASTER
  • Alteration
  • Porphyry Copper
  • Sarkuh
  • Mineralogy
  1. بابااحمدی، ع.، 1388، کاربرد سنجش از دور در زمین شناسی، انتشارات آوای قلم.
  2. خوئی، ن.، قربانی، م.، تاجبخش، پ.، 1378، کانسار مس در ایران، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور.
  3. شهاب پور، ج.، 1380، زمین شناسی اقتصادی، انتشارات دانشگاه باهنر کرمان.
  4. علوی‌پناه، س.ک.، 1388، اصول سنجش از دور نوین و تفسیر ماهواره‌ای و عکس هوایی، انتشارات دانشگاه تهران.
  5. ملکشاهی، ش.، رساء، ا.، رشیدنژاد عمران، ن.، لطفی، م.، 1392، بررسی زمین شناسی اقتصادی، ژئوشیمی و مدل تشکیل کانسار مس پورفیری سرکوه (جنوب غربی معدن مس سرچشمه)، رساله دکترای دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران.
  6. مهندسین مشاور کان ایران، 1387،گزارش نهایی مطالعات زمین شناسی و دگرسانی محدوده سرکوه در مقیاس 1:5000.
  7. مهندسین مشاور زرناب اکتشاف، 1389،گزارش مطالعات زمین شناسی و دگرسانی محدوده سرکوه در مقیاس 1:1000.
  8. Abrams, M.J., Brown, L., Lepley, R. & Sadowski, P., 1983, Remote sensing for porphyry copper deposits in Southern Arizona, Economic Geology, 78:604-591.
  9. Abrams, M., 2000, The Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA TERRA Platform, Int. J. Remote Sens, 21:859-847.
  10. Azizi, H., Tarverdi, M.A. & Akbarpour, A., 2010, Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran, Adv. Space Res, 46:99-109.
  11. Bedini, E., 2011, Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Adv. Space Res, 47:60-73.
  12. Boardman, J.W., Kruse, F.A. & Green, R.O., 1995, Mapping target signatures via partial unmixing of AVIRIS data, summaries, Proceedings of the Fifth JPL Airborne Earth Science Workshop, 23–26 January, Pasadena, California, JPL Publication 95:23-26.
  13. Crosta, A. P., De souza Filho, C.R., Azevedo, F. & Brodie, C., 2003, Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis, Int. J. Remote Sensing, 24:4233-4240.
  14. Crowley, J.K., Brickey, D.W. & Rowan, L.C., 1989, Airborne imaging spectrometer data of the Ruby Mountains, Montana: mineral discrimination using relative absorption band-depth images. Remote Sens, Environ, 29:121-134.
  15. Goetz, A.F.H., Rock, B.N. & Rowan, L.C., 1983, Remote sensing for exploration: an overview, Econ, Geol, 78:573-590.
  16. Guo Liu, J. & Mason, P.J., 2009, Essential Image Processing and GIS for Remote Sensing, Wiley and Sons Inc., New York, 40:420-433.
  17. Harsanyi, J.C., Farrand, W.H., Chang, C.I., 1994, Detection of subpixel signatures in hyperspectral image sequences. Proceedings of 1994 ASPRS Annual Conference, Reno, Nevada, 20:236-247.
  18. Hewson, R.D, Cudahy, T.J., Mizuhiko, S., Ueda, K. & Mauger, A.J., 2005, Seamless geological map generation using ASTER in theBroken Hill-Curnamona province of Australia, Remote Sensing of Environment, 99:159-172.
  19. Hunt, G.R. & Ashley, R.P., 1979 , Spectra of altered rocks in the visible and near infrared, Econ. Geol, 74:1613-1629.
  20. Mars, J.C. & Rowan, L.C., 2006, Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms, Geosphere 2, 12:161-186.
  21. Meyer, C. & Hemley, J.J., 1967, Wall rock alteration, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits: New York, Holt, Rinehart and Winston, 31:166-235
  22. Ninomiya, Y., 2003, A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data, Proc. IEEE 2003 International Geoscience and Remote Sensing Symposium (IGARSS’03) Vol. 3, Toulouse, France, 21–25 July 2003, 33:1552-1554
  23. Ninomiya, Y., 2003, Advanced remote lithologic mapping in ophiolite zone with ASTER multispectral thermal infrared data, Proc, IEEE 2003 International Geoscience and Remote Sensing Symposium (IGARSS’03) Vol. 3, Toulouse, France, 3:21-25.
  24. Pohl, C. & van Genderen, J.L., 1998, Multisensor image fusion in remote sensing: concepts, methods and applications, International Journal of Remote Sensing, 5:823-854.
  25. Ranjbar, H., Shahriari, H. & Honarmand, M., 2003, Comparison of ASTER and ETM+ data for exploration ofporphyry copper mineralization: A case study of Sar Cheshmeh areas, Kerman, Iran, 8:673-596.
  26. Rowan, L.C., Goetz, A.F.H. & Ashley, R.P., 1977, Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images, Geophysics, 42:522-535.
  27. Rowan, L.C., Hook, S.J., Abrams, M.J. & Mars, J.C., 2003, Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a new satellite-imaging system, Econ, Geol, 98:1019-1072.
  28. Rowan, L.C. & Mars, J.C., 2006, Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Refl ection Radiometer (ASTER) data and logical operator algorithms, Geosphere, 2:161-186.
  29. Rowan, L.C., Schmidt, R.G. & Mars, J.C., 2006, Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment,104:74-87.
  30. Sabins, F.F., 1987, Remote Sensing Principles and Interpretation, 2nd edition, Journal of Cartography, Freeman,New York, 11:251-252.
  31. Sabins, F.F., 1999, Remote sensing for mineral exploration, Ore geology review, 14:157-183
  32. Sadeghi, B., 2013, Using ETM+ and ASTER sensors to identify iron occurrences in the Esfordi1:100,000 mapping sheet of Central Iran, Journal of African Earth Sciences, 85:103-114
  33. Sillitoe, R.H., 2010, Porphyry copper system, Society of Economic Geologist, inc. Economic geology, 105:3-41.
  34. Tangestani, M. H. & Moore, F., 2001, Porphyry copper potential mapping using the weights‐of‐ evidence model in a GIS, northern Shahr‐e‐Babak, Iran, Porphyry copper potential mapping using the weights‐of‐ evidence model in a GIS, northern Shahr‐e‐Babak, Iran, Volume 48, Issue 5, 40:621-776
  35. Tosdal, R.M. & Richards, J.P., 2001, Magmatic and structural controls on the development of porphyry Cu ± Mo ± Au deposits: Reviews in Economic Geology, 14:157-181.
  36. Whitney, Philip R., Olmsted, James F., 1998, Rare earth element metasomatism in hydrothermal systems: the Willsboro-Lewis wollastonite ores, New York, USA, 7:25-41.
  37. Loughlin, W.P., 1991, Principal component analysis for alteration mapping, Photogrammetric Engineering and Remote Sensing, 57:1163-1169.
  38. Yamaguchi, Y., Kahle, A.B., Kawakami, T. & Paniel, M., 1998, Overview of the advanced spaceborne thermal emission and reflection radiometer (ASTER), IEEE Trans. Geosci. Remote Sens, 36:1062-1071.